f 3

>

APIT/GOR/ENS/93M-09

' 2 590
AD~ G \mmmmm |

2000101318,

SPARTAN II: AN INSTRUCTIONAL HIGH
RESOLUTION LAND COMBAT MODEL

THESIS |
Edwin H. Harris 11, Captain, USA

HIT/GOR/!#S/93M-09 e DT‘C | ‘

ELECTE E=R)
s APRO5 19938 E

Approved for public rdléase: distribution unlimitad

. . 93-06906
98 4 02 065 [AEREEEE

APIT/GOR/ENS/93M-09

MODEL

THES18

SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION LAND COMBAT

‘D0 QUALITY INEFECTED &

Prdaontéd to the Faculty of the school_ of Engineering

of the Air PForce Institute of Technology

Alr University
In partial fulfillment of the

Requirements for the Degree of

Accesion For

Unannounced

NTIS CRA&I 5
Master of Science in Operations Research{ DTIC TAB
|

Bdwin H. Harris III, B.S.
Captain, USA.

nn_:eh 1993

‘ﬁ

Justification

By

Dist. ibution |

Availability Codes

Avatl and/or
peclal

Approved for public release; distribution unlimited

THESI8 APPROVAL

STUDENT: CPT Edwin Hawkins Harris 111l | CLASS: GOR-93M

THESIS TITLE: SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

"DEFENSE DATE: 24 Pebruary 1993

COMMITTEE NAME/DEPARTMENT | " SIGNATURE
ADVISOR MAJ Edward Negrelli/ENS QW / %;MW

READER MAJ Bruce Morlan/MA B K’W "‘/L—_ |

Preface

The goal of this thesis was to improve SPSRTAN, a high
resolution land combat model developed for use in a land
combat modeling coucrse. Using the existing model concept,
the subsequent mcdel development progressed through code
development and initial imﬁlgméntation. The new SPARTAN
models more combat processes and more accur;tely displays
current modélinq techniques than the previous version did.
The ﬁodel also is simplé enough for students to readily
understand model components and their operation.

This thesis provides background information about the
original SPARTAN, outlines the development methodology, and
discusses the methods employed to model ccmﬁat processes.
It also provides computational temp}ates, a user's manual,
and fhe computer code. As designed, QPARTAN is an improved .
model (although still a simple one), that should serve as a
useful tool for learning about the advantages and
disadvantages of high resolution combat modeling.

I wish to thank MAJ Edward Negrelli and MAJ Bruce
Morlan for their guidance and invaluable assistance in the
development of this thesis. I also wish to thank the other
officers in the land combat modeling courses who proudly
chved as guinea pigs and provided outstanding feedback
about model shortcomings. PFinally, I wish.to thank my wife %
for tolerating the computer hermit for the past 8 months. i<==5*

Edwin H. Harris ;

ii

Preface ce e e e e e
List of Figures . . ; e e
List of *ablos e e e e
Abstract . . PO

I. Introduction . . .

General . . .

Background . .

Problum Statement

Objectives . .

Definitions. . . .
. High Resolution.

* o o o

Stochastic Process.

Interactive Model
Scenario . .

Terrain Reprosentatio

Movement . . .

- Target Engagement
SCOPC. L] . .] .
Approach.
Equipment . . .
Thesis thanization .

.
n
.
[)
.
.

II. SPARTAN and Combat Modeling Review.

Introduction . .

S8PARTAN Background Information

Parent Models . .

" SPARTAN Hardwarelsoftware Roquirements

S8PARTAN Documentation

SPARTAN Verification and Validation.

o : SPARTAN Classification

Classification by Purpose
Classification by Model Qualities

Classification by Construction.

S8PARTAN's Scenario .
Data Base Information
. Terrain Punctions. .
Combat Processes . .
Movement . . .
Target Search .

Line of 8Sight

iii

L]
.
L)
L]
L]
L]

COBOOANI

® . o L 2 . e [] L] - [] L2 - * [] . - []

Page
ii

vii
viii

v
o

Target Acquisition

Target Selection . .
Target Engagement .
Direct Fire .
Indirect Pire.
Impact Assessment .
React to Fire . .
Command and Control
’ Output . *« e . . .
Summary « .« ¢ o« s

*« & & o o o o o

III. Model Dovelopﬁent Process. . .

Inttoduction . .
Development Methodology. .
Problem Definition . . .
Model FPormulation. . . .
Modeling Environment .
Modeling Effort .
Modeling Assumptions
Model Definition . .
Static Description
- Dynamic Description
Model Development . .
Creating a Database
Event Set Management
Model Enrichment . .
Randomness . . ., .
Instructional Components .
The Preprocessor . .
Terrzin Editor. .
Soldier Attribute Editor
Probability of Hit Editor
Event List Editor. . .
Help Menu . . .
S8PARTAN
Help Menu . .
Simulation Graphics
Output
Model Assessment
Assessment Process. .
GAO Criteria Assessment
Documentation. .
Validity . . .
Verification . .
Model Objective Assessme
Portability . .
Useability. .
Simplicity. .
Applicability.
SUmMmMAry . .« .+« « o+ .

¢ & @ & @ &5 @ & * » o & & *o 9 o

t

.oo..b...c..-....

. . L .

IV. Combat Processes.,, .

iv

¢ & & @& ¢ s e ° v @

. & L] [] L] L] - o * ®

[) - [L) L] L] L] L] e e L] . @ L - » L » L] * ® . L] L] L] L] * = * L N - - - L]] - L] L d

36
41
43
43
44
45
46

48
49

51

51
51
53
56
56
56
56
57
57
59
62

- 62

63
€5
66
67
68
68
69
69

70

70
70
70
71
72
72
73
73
74
75
76
76
76
77
77
77
78

79

V. Conclusion. . . .+ ¢« ¢ ¢ o« o

Appendizx

Appendiz B

Appendix
Appendix
Appendix
Appendix

Introduction. . .
Movement

Recommendations

Btep S8ize. .
Movement Time
Obstacles. . . e

S8PARTAN Movement P:ocess.

Limitations and Assumptions

Target Search . .

Condition I: sufticiont siqnat
Condition II: Line of Sight.
Condition III: Detection. .
SPARTAN Search Process . .

* o »n o o
- L] . -.-
e o o o
[] * L] .

(2o ¢ ¢ o o 0 o o

Heuristics . . .
Limitations and Assumptions.
Target Selection . . «

BPARTAN Selaction Process .
Limitations and Assumptions.
Direct FPire Engagements. . . .
Probability of Hit. . . .
Grenade Launcher . . .
SPARTAN Direct Pire Procoss.
Limitations and Assumptions.
Indirect Fire Engagements . ., .
SPARTAN Indirect Fire Process
Limitations and Assumptions.
Impact Assessment.
React to Fire . . .
Change Formation and Di:oction .
Change Formation/Diraction Pro
Limitations and Assumptions.
Command and Contrel
BUMMALY . . =« =« o+ o o s+ e

Introduction .
Summary . .

e o o »
e o o @
e o o

!
¢ o &
¢ o o 4«
¢ o 8 @

Conclusion . .

A: Threshold Pinf Template

Probability of Acquisition Template
Probability'ot Hit Template . . .
SPARTAN Operating Instructions . .
Preprocessor Code

S8imulation Code

Bibliography« .+ .+ + . . .

® S o » 0 0 6 ® @ 6 O & ¢ ® O s 0 8 o ® &6 & & % & ° 8 6 & O e @

o'.Qcovoc..ooo'ooooo.oo-o

® o o e ¢ 2 © o6 s 2 0 0 0 0 s 0 9 & s s 0 o

o o o o
* o & @
® o & e

79

80
80
81
82
84
84
86

90
90
93
95
96
97
99
99
100
101
102
105
105
108
110
110
112
113
113
115
115

‘116

117

17

117
120
121
122
127
133
143
166
208

248

R N 1.1

vl

‘List of Pigures
Figure '
l. Model Development Process
2. Conical Methodology Outliﬁe —
3. Move Process
4. Condition I of the Search Process
5. Line of S8ight Process
6. Detection Process (Condition 111)
7. 8elect Process I
8. Direct Fire Process
9. Indirect fire Casu§lty Assessment
10. Indirect Pire frocesa e s & e
- 1l. Impact Assessment Procvess . . .
12, Changiﬁg Direction and Formation Process

vii

Page
52
53
83
92
93
94
97 -
103
108>
109
111
114

~ List of Tables

Attributes of Spartan's Entities .

Default Weaponé' Assignments. . .

Reaction to Fire Probabilities . .

Events . . .

Dafault Porcs Compesition. . . .

Map Color Translation

Tabie
1,
2. Terrain Attributes .
3. Event Attributes .
4. Soldier Attributes .
5. System Attributes. .
6. Default Data Files .
7. Target Dimeﬁsions .
8.
9.
10. SPARTAN's Scheduled
11.
12.
13. React to Fire . .
14. 8oldier Attributes .
15. Detault Data Files .
16. SPARTAN gata Files .

viii

Page

25
58
58
59
59
63
87
99
112
145
146
147
154
159
162
163

APIT/GOR/ENS/93M-09
Abstract

This project improved SPARTAN, a high resoluticn laﬁd
'combat'model demonstrator. SPARTAN was originally develéped
as a hands-oﬁ trainer for land combat modeling students

' because there were no models specifically designed to teach
the analysts how the modeis function.

SPARTAN is built to demonstrate the techniques used in
the current generation of US Army high resolution models.
Like.the original, the model is primarily a small scale
attrition (both direct and indirect fire) model. The model
represents 12 soldier. involved in the following processes:
‘target search, target selection, direct fire engagement,
indirect fire engagement, movement, rséction to fire,
obstacle breaching, and some elements of command and
control. The emphasis on model development was to keep the
logic simple, yet accurately portray current high resolution
modeling techniqugs as used in the more capable models,

. JANUS and the Combined Arms and Support Task force
Evaluation Model (CASTFOREM). SPARTAN contains nunierous
features that allow the user to observe, in great datail;
how the model represents the various activities of the
soldiers. An educationai assessment of the model was

performed by students and faculty at the Air Force Institute

of Technology.

ix

SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTIOW
LAND COMEAT MODEL

1. Introduction

General

_' The purpose of this thesis is to document my
improvements tc SPARTAN,‘the prototype high resolution land
.combat,model demonstrator. This qhipter provides background
informaticn about my efforts to improve SPARTAN's value as
" an instructional tool. The first section of this chapter
 reviews the increasing importance of simulations to the Army
vand'scme of the p:oblgms with simulation use. TLe next
section identifies the problém that SPARTAN attempts.to
solve and the specific objectives of my improvements to
SPARTAN. Thé next section defines some important modeling
terms that are used throughout this thesis. This is
followed by an outline of the scope of my improvements to
SPARTAN and the approach that 1 employgd in making these
improvements. I then identify the equipment requirements

for SPARTAN. The last section will outline the thesis

organization.

Background

A model is "an idealization, ar abstraction of a part
of the real world" (20:211) and can be a set of mathematical
equations, a scenario, a board game cr a computer

1

simulation. %The military uses models and simulation; to

accomplish a variety of tasks such as (4:6):
1) Technical evaluation
2) Doctrinai evalustion
3) Porce-structure sevaluation

4) Analysis of military and diplomatic factors and
international relations

$) Training and education

65 Development of tosearph methodology
Thus, cne military model migﬁt estimate the best way to
allocats nuclear bombers and missiles to engsure destruction
of enemy targets while another might evaluate the
effectiveness of new infantry rifles. |

The Army has boon'inﬁcrestod in models for all of the
reasons above, but has been particularly 1nto:odtod in
models for force structure and doctrinal evaluation, and for
training and education. Over the years, the Ahrmy has
developed models that simulate theater levei conflicts and
other models and simulations that replicate single vehicles
and soldiers. These models are used at every echelon of the
Army, from the vehicle crew level to Corps and Army staffs
and commanders. Onme primary reason for this increased use
of models and simulations is money. It costs less to
practice on a machine or computer, than it does to use tanks
(or other expensive equipment), personnel, and other

valuable training resources. This increasing reliance on

simulations shows no sign of slowing and, in fact, will

: piobahly increase as defense budgets continue to decline.

General Frederick M. Franks, Commanding General, U.S.
Army Training & Doctrine Command, addressed the use and
‘importance of simulations to the Army in an interﬁipw
published in the "ARMED FORCES JOURNAL":

We put all that together and decided that the Army
needs to provide itself an institutionalized way to
continue to examine if we're going in the right
direction for the circumstances within which we are
now called to serve the nation.

+«essthe Louisiana Maneuvers. They will give us the
opportunity to use simulations, which have advanced
considerably in their ability to replicate the
battlefield with great fidelity at all levels.....on
perhaps an annual basis to test, in an operatiocnal
scenario, the Army's ability to fulfill its Title 10
responsibilities...(21:67-68) ‘

In fact, General PFranks has proposed a system of "battle
laboratories” whereAsimulatiqns will be tied in with actual
field uvnits to test and develop mcre effective tactiés and
training scenarios (21:67-68). Thus, simulations and models
will play an increasingly important role in the Army.

While models and simulations are of great benefit to
the Army, they alse present a danger. This danger is that
model results might be accepted as truth as opposed to being
only one sample of many possible truths. Decision makers
and analysts should keep this aspect of models in mind. A
1980 GAO report highlights this fact, stating that models

"are intended to be used as an extension of, rather thah'a

replacement for, human judgment™ (12:9).

This‘danger is exacerbated in the combat models used by

the Army, because these models replicate actions and

decisions of humans under stress. This makes the problem of
modeling combat "siuishy". Squishy problems "do not have a
. formulation that is both analytically tractable (based on
science, empirical research, etc,).'and which unaﬁbiquougly
captures the subﬁtantive problem" (12:9). This fact makes
modeling such ﬁroblems difficult and the formulation and
conclusions fo: themn #re "inherehtly subjective;-requiring
and depending on careful and considered judgment by the .
decision maker" (12:9). N _
Thus, thq increased reliance of the Army on simulatibna'
and models is going to require an increased understanding on
the part of decision makers about the way combat processes
are modeled. The problem is that combat simulations tend fo
be complex, modeling thousandﬁ of entities and hundreds of
systems and processes. CASTFOREM (one of the Army's land
combat models), for example, models combined arms ground
conflicts and includes such systems as helicopters, fixed
wing aircraft, air defense, and dismounted soidiers. 1It
also takes into account weather, ambient light conditions,
and battlefield obscurants. It models direct fire weapons,
directed energy weapons, and indirect fire weapons |
(14:C-1;6:1-11). The complexity caused by modeling all of

this ensures that the decision makei will probably not know

what assumptions and modeling techniques the model
incorporates. Therefore, he probably does not understand
the quality of the data on which he is basing his decision.
Thus, it is extremely importantvthat the analyst/modeler
performing the study or analysis understand; the assumptions
and methods used in the model and is able to communicate thév
advantages and disadvantages of these to the decision maﬁer.'

Unfbrtunately there is very little written about |
modeling combat processes and‘there afe no simulatioﬁs or
models designed specifically to tiain analysts about
modeling these processes. In an effort to correct this
problem, CPT‘David Cox, a 1992 Air Porce Institute of
Technology Operations Research masters student, developed a
prototype land combat model demonstrator called SPARTAN.
SPARTAN is a high resolution combat model "developed for use
as an instrucgional aid in land combat modeiing courses™
(5:4i). It uses modeling technigues that are representative
of the techniques used in the two premier Army high
resolution models, CASTFOREM and JANUS (5:4i).
Problem Statement

The Army makes extensive use of high resolution land
combat models for analysis and to train brigade and

battalion commanders and staffs. A search of the 528 games,
models and simulations listed in the Catalogue of Wargaming
and Military simulations Modeling however, reveals that

there is no suitable model to train the analysts who use

these models (1%:111). CPT David Cox (GOR-M92) developad

SPARTAN to f£ill this need. SPARTAN does demonstrate some of
the basic current modélinq techniques, but leaves much room
for improvement.

The purpase of this thesis effort is to continue
development of SPARTAN, and improve its value as an

instructional tool for land combat modeling courses.

ves

SPARTAN is a war game. A wargame can be defined as:

2 simulated military operation involving two or more
opposing forces and using rules, data, and procedures
designed to depict an actual or hypothetical real-life
situation. It is used primarily to study problems of
military planning, organization, tactics, and
strategy. (4:8)

Because of the broad range of modeling activities under'

th§ general heading of war games, there are few hard rules
for designing them. There are, however, "certain principles
of modeling which are international and, in fact, transcend
technique, military focus, or specifié model™ (2:9).
Because these are principles and not rules, building a war
game/combat model.becomes something of an art. The
successful combat modeler should ensure the model (4:9-11):

l) PFits customer regquirements.

2) Produces the appropriate criteria for analysis.

3) Resolves the conflict between the desived level of
modeling detail and uncertainties in input data.

4) Deals with uncertainties either explicitly,
implicitly, parametrically or by hedging.

5) 1s 1ﬁ great breadth or in great detail, but not
both.

6) Becomes more rigid as the focus of the application
becomes closer to chronological time.

7) Does not exceed the capabilities and level of
detail as constrained by the state of the art of
the computing equipment.

8) 1Is invisible to the user.

Using these principles, I decided upon the following
objectives in continuing the development of SPARTAN:
portability, simplicity, applicahiliﬁy, and usability.

By pdrtability, I rqfer to the ease of transferring
S8PARTAN. This means that SPARTAN (and its supporting data
files) is small enough (less than 500K) to be kept on a
single disc and is written in a generally available and
easily decipherakle language (QﬁickBASIc). It also means
that SPARTAN does not require a super computer. It is, in
fact, designed to be run on a personal computer.

8implicity refers to the number of combat processes
SPARTAN demonstrates. This number is kept to a minimum to
avoid complexity. Complexity would dafeat SPARTAN'i‘purposo
of being an easily understood instructional tool and would
also limit its portability.

SPARTAN is also applicable. The processes, as far as
possible, accurately portrzay techniques used by JANUS and
CASTFOREM. These techniques may or may not be good
replications of reality, but by using SPARTAN, students will
gain insight into the implications of using these SN
techniques. |

-‘ ‘ [) [\ : . \., c - N '.":; A

SPARTAN is'usable.' It producésvoutput, again similar to
the output from'CASTFORE& and JANUS, that can be used for
analysis. SPARTAN accepts varied input so sensitivity
analysis can be performed. SPARTAN also is designed so that

users need not be 1nfantrr experts or compﬁter geniuses to

run the simulation.

Definitions

This secfion-defines a few modeling terms tﬁat will be
used throughout'the remainder of this thesis.

High Resolution. A high resolution combat model is a
model that simulates_activitiés of iﬁdividual entities{
rather than aggregated units. An entity is an individual
soldier, tank, cannon, or'aigcrafﬁ etc. as oqused to an
aqg:eg;té'(unit) composed of two or more individuals. anch
individual entity has its own characteristics and the
interactions of these indiyiduals determine the outcome of

conflicts. The individual combatant sees the battle from

‘his own perspective and conflicts are resolved on an R

individual shooter-target basis. The emphasis on detail
makes representation believable, but limits the ﬂumber of
combatants that can be modeled. This is because the
thousands of entities doing several processes overwhelm the
ability‘of the computer (13:1-6,1-7). _
§;g§hg§;ig_2;ggggg. Most high resolution combat models
use stochastic processes to model uncertainty. A stochastic

process is a process where the next event is decided in a

probabilistic manner. There may be several posaible next
events, some more likely to occur than others. This type of
process is particularly'appropriate when describing combat
because of the uncertaintf of outcomes in battle. Using
‘models that employ stochastic processes to determine
outcomes, injects uncertainty and chance oﬁtcomes and
provides.a more realistic representation of combat (13:1-6).
.Models frequently employ the Monte Carle method to achieve
this probabilistic outcome. Using this{method, a random
numbér is drawn frém a distribution and compared to a
threshold probability of some event océ#rrinq. If the
random number is less than the threshol%, the event occurs,
otherwise, the event does not occur.

In;gxggiixg_ﬁgdgl. All models are, in reality,
interactive in that they regquire some erm of user input.
This can be either data input prior to Hunning‘the model or
decision input during model runs (or a éombination of both).
I will refer to interactive models as oJes in which users
can provide input (interact with the computer) during model
runs to influence model outcomes. In combat models, these
inputs take the form of tactical decisions such as where to
move units, who to engage with indirect or direct fire, who
to supply, and other realistic battlefield decisions. This
type of model is very useful as a training tool because it 7
allows people to react to situations, but is less useful for

analysis because the input is not controlled. This makes it

difficult to determine an audit trail of causal

relationships.

8cenario. The scenario is the sitnation that
establishes the initi#l conditionﬁ for the modei. The
scenario includes friendly and enemf'torco structures,
weapons, plans, and tactics. Scend;iog also include terrain
and environmental considerations.

Terrain representation. Terrain representation is one
‘of th§ most complicated and most impo:tant aspects of land
combat models. Ndrm;lly, terrain is represented by
subdividing it into regularly shape&lﬁolygons of various
sises. Each of these polygons normally contain terrain of
the same characteristics, such as slope, vegetation, and
trafficability. These characteristics are sssigned values
and become the polygon's attributes. ,

Movement. Land combat models generally must simulate
the movement of combatants across the battlefield. Rates of
‘advance depend on attributes of the moving entity such as
speed, weight; cross country hobility, and formaticn and on

the attributes of the terrain polygon through which the

entity is moving.
Target Engagement. Target engagement is actually

composed of the three sequential subprocesses of target
detection, target selection and target engagement (firing
the wotpon). All three of these processes are stochastic.
Entities search an area and have a probability of detecting
- € target. If more than one target is detected, the entity

10

Cdeme

then rank >rders his Jdetected targets based on target

prioritization rules given by the model or by the user.
Based on these rules he may or may not fire. If he fires,
he has a probability of success of hitfinq the target based
on range, size of target and weapon iccuracy. I1f he hits
the target, he has a probability of either wounding or
killing the target. |

Scope

CPT Cox was successful in desiqning‘a protot}pe model
that demonstrated basic high resolution combat modeling
techniques. CPT COx'$ version of SPARTAN demonstfafed the
following (5:94):

l) Time keeping and an implementation technique for
event set management and synchronization.

2) Algorithms used to model movement, terrain, target
detection, target selection, weapon accuracy, and
attrition. .

3) Techniques to model decision logic of the soldier
" as well as simple command and control issues.

4) Stochastic techniques for fepresenting the
occurrenca of randomness on the battlefield.

5) Data requirements and storage techniques for
various model components.

6) The overall process of developing a combat
simulation model from concept to implementation.

7) An example of components for a typical combat
mode]l such as the scenaric input, a preprocessor,
the simulation model, various types of output, and
accompanying documentation.

There were, however, several areas I felt could be improved.

These areas arec (5:94-100):

11

1)

2)

3)

4)

6)

Computer graphics. They were simplistic and
did not enhance understanding of model processes.

Movement processes. Movement is not tied to any
formation. All entities move independently.

Terrain issues. There is no obstacle play and
terrain detail is lacking. :

Weapons. CPT Cox used made up weapons accuracy
data and made up weapons. There is no indirect
fire modeling. :

Preprocessor activities. Using the preprocessor is
difficult. It does not make clear what the effect
of altering data files will have on the simulation.

Illimitéd the scope of my improvements to these areas.

Approach

There are ten stages of development of simulation

models.
1)
2)
3)
4)
5)
6)
7)
8)
9)

These are (19:10-11){

Problem Formulation

Model Buildihg

Data Acquisition

Model Translation

Verification

Validation

strategic and Tactical Planning
Experimentation

Anilysis of results

10) Implementation and documentation

This chapter serves to accomplish the first stage of this
" process, problem formulation. Given the natufe of this

problem and the purpose of SPARTAN, I focused my thesis

12

efférta on stages 2-6 to make SPARTAN a more effective ﬁigh
resclution combat model demons .rator.

_ CPT Cox had already done stage 2 to some degree, but
because of the improvementé and additions that I made to
SPARTAN, it was necessary to redesign his model. Only a few
of the original model components témain.

The acquisition of data necessarily supported my
improvements of SPARTAN. I continued to rely on James
Hartman's uhpuhlished notes on high resolution combat
modeling, as did Cox, for model methodology and theory.
Army Pield Manuals were helpfﬁl for realistic force
structuring, movement fornations, and movement speeds. This
in turn helped demonstrate model invisibility. 1 received
weapons accuracy data from the Armf Material Systems
Analysis Activity (AMSAA) for both US and Soviet squad

weapone, this data combined with Engineering Design
2, helped in

'hdining different weapons' effects. 8ince the purpose of
SPARTAN is to demonstrate techniques used in the Army's two
premier models, I compared all of SPARTAN's combat processes
to those modeled in CASTFOREM and JANUS. Another major
improvement was the modeling of indirect fire. The
CASTFOREM and JANUS manuals and FM 23-91 Mortar Gunnery were
helpful for this.

The big step in making improvements was the translation
of improvemcnts into computer code. CPT Cox tried, as much

as possible, to use structured block programming to make

13

SPARTAN. I also madé use of structured prbgramming because

it is easier to troubleshoot. QuickBASIC supported this
apbroach. I did the most difficult tasks first, such‘as
improving graphics, interface and movement, since'ﬁhesev
carried over into‘all other aspects of the model.
Verification is the process of ensuring tﬁat model
components are functioning as intended (19:11). This was an
odqoinq process. As I made programming changes and
additions, 1 verzfied they did wha. I wanted them to. 1
continuously dacumented my efforts so that follow on work

could be done.g

The last ;tage of the model development process is that
bf'validation.! Validation is the process of ensuring that
model results ire correct (19:11). This was difficult as
there are "no xperimentallyvverifiéd models of combat ‘
processes" (3:i6). Instead of validation, I used the same

| .

validation criteria as CPT Cox, that of reasonableness (face
validity). Since SPARTAN's results looked reasonable, I
accepted them as valid. I also used.blind testing, issuing
documentation and the program to AFIT land combat modeling
students to see if SPARTAN achieved its intended purpose,
that of accurately demonstrating high resolution land combat

modeling techniques.

Equipment
The equipment that I used for this theais is the same

as listed by Cox:

14

1) 1IBM AT compatible microcomputer with minimum EGA
color graphics ,

2) Microsoft DOS 3.3
3) Microsoft QuickBASIC 4.5 programming 1angua§e
4) MATHCAD 2.5 Mathematics Software
SPARTAN runs on any IBM or IBM clon: with DOS 3.0 or better.

I designed and built SPARTAN on a 286 and have run .t bn

486s. Obviously, it runs faster on 486, but performance was

satisfactory on the 286 models.

Chapter II is a réview of specific SPARTAN combat
ptoce;ses and a comparison of them to processes ﬁodeied in
JANUS and CASTFOREM. Chapter 11l is a review of the | |
methodology I employed in formulating, building, and coding
SPARTAN.: Chapter IV covers the specific algorithms and
logic I emplqyed in SPARTAN'Ss combat processes. Chapter V
summarizes my efforts and offers recommendations for future
SPARTAN improvements. Appendix A is a MATHCAD 2.5 template
used for computihg threshold observer-target probabilities,
Appendix B is a MATHCAD 2.5 template used for computing the
probability of acquisition tables. Appendix C is a MATHCAD
2.5 template for computing the probability of hit for the
M16A2. It also includes raw accuracy data for all weapons
used in SPARTAN and the appropriate probability of hit
tables. Appendix D is the user's guide. Appendix E is a
listing of computer code for the preprocessor. Appendix F

is a listing of computer code for the simulation.

15

T o e A RN g P

I11. SPARTAN and Combat Modeling Review

Introduction
The purpose of this chapter isvto review the techniques

and hothpdology used in the original SPARTAN and compare and
contrast them to techniques ﬁaed in current high rosolufioh -
land combat models. The first section reviews background
information about SPARTAN and the two premier Army high
resolution models, JANUS and CASTFOREM. The following
section discusses the general composition of SPARTAN. The
third section concentrates on the combat processes that
SPARTAN initially covered, and the combat processes that I
added. The last section reviews SPARTAN simulation ocutput.
SPARTAN Background Information
SPARTAN is a high resolution land combat model designed
to demonstrate current modeling tichniquol. It is
"primarily a small scale direct fire attrition model under
the definitions of the Army Mocdel Improvement Program”
(5:13), Using the definitions provided in the Catalog of
Marsaning and Militacy Sinulztions and Models (16:A1-A22),
SPARTAN is a high resolution, two-sided, force-on-force,
stochastic, event sequenced simulation model of a direct
tire conflict. I will go into detail what these terms mean
later in this chapter.
SPARTAN was developed because of the lack of a suitable
‘model to train analysts who would be working with high

16

resolution combat models in the Army. CPT Dave Cox, an Army

student at the Air Porce Institute of Technology, built
SPARTAN from the ground up in 1991-1992 at the request of
'MAJ Garambone, the AFIT land combat modeling instructor. |
With refinement, the model was for use at AFIT's Land Combat

‘Modeling course.
Parent Models

SPARTAN was designed to demonstrate basic combat
modeling procedures like those used in‘tho Army's premier
high resolution land combat models, JANUS and the Combined
Arms and Support Task Force Evaluaﬁion Model (CASTPQREK)
(5:95). The proponent for both of these models is the
Army's Training and Doctrine Command Analysis Center-White
Sands Missile Range (TRAC-WSMR), based at White Sands
Missile Range, New Mexico (14: Cl,J34). TRAC uses these two
models for doctrinal and force-structure evaluation and for
training and education at the brigade and battalion level.

TRAC developed CASTFOREM at White Sands Missile Range

ih-1§83 and hasrcontinued to update it (14:C-11). ”éASTiBﬁﬁHMWVV

is a "high resolution, twe-sided, force-on-force,
stochastic, event sequenced, systemic simulation model of a
combined arms conflict™ (7:1-2). TRAC uses it primarily for
analysis of tactics and force structure. CASTFOREM models
all types of direct fire, helicopters, dismounted infantry,
artillery, engineering operations, logistics, combat service

support operations, communications, maneuver, detailed

17

search and acqﬁisition and realistic battlefield conditiopg

(7:2-3). The model is non-interactive; once initial data
has been input to the computer; there is no requirement for
human decisions as inputs. The entities in the model have
their own characteristics and select their own actions using
decision tables.

The Conflict Simulation Laboratory at Laﬁrence
Livermore National Laboratory developed JANUS in 1978.
Lawrence Livermore and TRAC have developéd several versions,

four of which are still in use (;4;3-3). JANﬁS(T) is

similar to CASTFOREM in resolution and methodologies, except

that it is interactive. In the interactive mode, JANUS(T)
reqﬁires that human decisions be 1nput,dﬁring conflict.
evaluations. This mode is the one employed for training
brigade and battalion staffs.
SPARTAN Hardware/Software Requirements

One of CPT Cox's original goals in developing SPARTAN
"was to provide a structured program code that would be easy
to understand and enhance as desire#" (5:66). He looked at
several languages including C+ and QORTRAN and elected to
use QuickBASIC 4.5. He did this for several reasons. One
reason was that QuickBASIC is rclatiﬁely easy to understand.
‘It is similar to FORTRAN in format and logic, and its editor
and this simple format make it almost idiot proof. |
QuickBASIC also supports modular programming and has a good
graphics capability. This eliminated the need for a

18

translator or graphics program to graphically represent the

simulation. QuickBASIC also has the ability to make

executable fileas that do not require cbmpilation in order to
run.

Writing SPARTAN in QuickBASIC made it possible for ch
Cox to meet another goal, that of making SPARTAN portable
(5:67). SPARTAN can be run on any IBM or IBM clone with DOS
3.3 or better. This makes it possible for users of SPARTAN
to take the uncompiled version with'them and make
improvements or modifications as they desire. This also
improves its usability because users do not have to have
access to a specialized or Super computer to use SPARTAN.

In addition to QuickBASIC, CPT Cox used MATHCAD 2.5 to
make templates for computing probability of acquisition,
probability of detection, and probability of hit tables.
SPARTAN Documentation

The documentation provided with SPARTAN served two
audiences (5:63). One audience was the student who is
expected to operate the model and learn about modeling. The
user's manual and on-line help files were provided for this
audience. The other audience was the person who wanted to
get involved in SPARTAN code and modify it. CPT Cox's
thesis was provided for this audience. |

There was a trade-off in level of detail versus

conciseness in the user's guide and the help files (5:63).
CPT Cox strove to limit the size of the manual, but based on

19

user input, he added detail to the on-line help (5:64). His

user's‘manual is 14 pages long and provides both a general

outline of model processes and explanations about why the
model does what it does. The manual #lso explains how
terrain and entities are répresented. The on-line help.
screen‘provides information similar to the manual éxcept'
that more detail is provided about model processes. |
SPARTAN Verification and Validation

Verification is the process of ensuring that model
components are functioning as intended (19:11). The modular

format of SPARTAN aided CPT Cox in cgrfyinq out.model

verification. ﬁe was able to check processes out in detailv

| before adding them to his model (5:55). According to Cox,

"a typical improvement cycle iavolved creatihg a simple

subprogram and having it print out all the data valueg it _
required” (5:55). By doing this, he was able to verify that

- subprograms were functioning correctly.

Validation is the process of ensuriag that model

results ars correéﬁ (19:11). This was difficult for CPT Cox

. because his data was tbfally made up in order to provide

reasonable representation of combat processes (5:95). cCPT
Cox did, however, institute a‘th:ee level assessment
process. CPT Cox evaluated the model, the thesis advisors
evaluated the model, and, lastly, CPT Cox used "blind
testing” (5:62). Blind testing means that‘the simulation

and supporting documentation are given to a test user with

20

no additional instructions (9:1-37). Testers were askéd to

provide feedback to CPT Cox regarding the suitability of the
model for its purpose and about the documentation. Blind
tests were conducted in two phases, with additions and

modifications to the model and documentation occurring after

each test.

PAR c o

There are several ways to classify models and
simulations. One way to classify models is by purpose.
Another way to classify them is by quﬁlities of the model,
such as the scope of the conflict or the level of detail of
processes (1:3). A third way to classify mode)s is by the
type of construction. This includes the amount of human
participation, method of time advancement and other design
criteria. This section will classify SPARTAN by all of
these methods.

Classification by Purpose. As was stated in Chapter I,
the military uses models for (4:6):

1) Technical evaluation

2) Doctrinal evaluation

3) Force-structure evaluation

4) Analysis of military and diplomatic factors and
international relations

5) fTraining and educatioen
6) Development of research methodology
These categories can be divided into the two broad

categories of analysis and training and education.

21

Hodeis designed for gnaiysis-are typically those used ‘ qi e
for research and evaluation tools (such as engineering Vo
models) or for operations support tqols (decision aids)
(1:3). Typically these types of simulatipns are run many
times to get mean eipected outcémes and confidence.intérvals
for results. Also typically, such‘models require little 6: ._; 4
no human interaction oncé the model begins a simulation run, :
this ensures model inputs are constant acroés runs.
CASTFOREM and some versions of JANUS are analytic models
(14:C1,J31-34). |

Models designed for t;aiping and education can be | L ;Q
subdivided into two categories: skills development and
exercise drivers (1:5). 8kills development models and
simulations develop'individual and team skills. An example
of this type of simulation is‘the Observed Pire Trainer for
Bradley Infantry Fithing Véhicle or M1 tank crews. . ~!i
Exercise drivers are combat simulations that resblve battles S
based on inputs provided by th§ tﬁrgot commanders and
staffs. They frequently allow real time interaction and
"create som§ of the stress, confusion, and time pressure of
battle along with the gimulafed combat scenario" (13:14).

In actuality, they can be thought of as "group skills"
development models. JANUS is a training model.

The otiginal SPARTAN lies somewhere between both of .
these classifications. It was designed along the lines of
an analytic model and is used as a skills developer. It

demonstrates the form and function of an analytic model P

22 ' 'yl

without the output of such a modcl. It does not support any

training, other than skills development cf wmilitary
analysts.

Classification by Model Qualities. Mode) qualities can
be thought of as the real entities and processas that the
" model represents (1:7). Qualities include the physical
" space in which entities and processes operate and the
categories of weapons that the model represents. “Another
quality is the level of detail of processes and'entities.

Both JANUS and CASTFOREM operate in a three dimensional
battlefield. They represent both ground and air conflict.
They also both represent combined arms task forces. A
combined arms task force is a battalion (infantry or armor)
that has been augmented with other types of forces. A
battalion could number over 1200 men, 60 armored fighting
vehicles, 200 support and logistics vehicles and aircraft.
Thus, JANUS and CASTFOREM model tanks, infantry fighting
vehicles (IFVs), artillery, close air (to a limited exteat),
infantry, military intelligence, air defense ittillory,
engineers and other elements (7:1-3,8:A1-A4). The mission
area of both of these models is the close fight between
battalion or brigade sized units. Both JANUS and CASTFOREM
model processes and entities at the individual weapons
system level. That is, they model individual tanks, IFvVs,
and dismounted soldiers.

SPARTAN also operates in a three dimensional
battlefield, but only ground conflict is represented. 1In

23

fact, SPARTAN models only dismounted infantry engagements.

The only weapons that SPARTAN models are direct fire
semiautomatic riflies. There are four types of weapons,

differgntiated by their accuracy at different ranges. The

.mission area for SPA§TAN is the cloée fight between squad

sized (approximately 6-9 men) elements.

Another quality that can be used to classify models is

the environment. The environment of the model is the state

of the physical system in which the model operates.

- Environment includes terrain, weather, light (day/night),

built-up areas and sea states (1:7). CASTFOREM models

terrain and vegetation, static weather (does not change
throughoﬁt‘the battle), dynamic obscuiants like smoke and
dust, and chemical contaminants (7:1). JANUS also plays
these systems (8:1-50). SPARTAN's environment is simple, it
models only terrain and does‘not represént effects from |

ueatherb. obscurants, buildings, temperature, ambient light

levels; electric warfare, or Nuclear,'BioloqicaI or Chemical = ,d'_t

effects.

. Porce composition is anothef guality of modeis that can
be used to classify them. PForce composition is the mix of
forces that is portrayed by the model. As was stated above,
both JANUS and CASTFOREM model.comhined arms task forces,
either battalion or brigade sized. The number of entities
and systems this represents is enormous. 'SPARTAN attempts
only a limited number of entities. It only allows a maximum

of 12 soldiers (combined total from both sides). Ko

24

i

\, - -.

headquarters are modeled, although one soldier on either

side can be designated as squad leader.
" To model these entities, CPT Cox used 17 attributes (5:47):
Table 1 Attributes of SPARTAN's Entities

ATTRIBUTE
1l S8oldier's current horizontal coordinate
2 Soldier's current vertical coordinate
3 Soldier's current elevation
4 Soldier's last horizontal coordinate
5 Soldier's last vertical coordinate
6 Soldier's height
7 Soldier's speed (not adjusted for posture)
8 8oldier's current direction of travel
9 Soldier's move status (moving/not moving)
10 Soldier's weapon type ‘
11 Soldier's current ammunition count
12 Soldier's current wound status
13 Soldier's posture
14 Squad leader marker
15 Soldier's original attack direction
16 Next target to engage
17 S8ide (RED/BLUE)

Classification by Construction. Another way to

classify models is by model construction. Construction
refers to the design of the model (1:9). Elements of
const%uction include the amount and type of human
intor*ction, how the model handles time processing, how the
modclarepresents randomness, and the sidedness of the model.
H\ participation is the extent "to which human
ptosenz:.:s allowed or required to influence the operation
of the model™ (1:9). CASTFOREM and JANUS(T) differ in this
respect. Once CASTFOREM has begun a mocdel run, no human
ipput is required. CASTFOREM has an expert system that uses

decision tables, based on the input scenario, to make all

25

required battlefield decisions (7:2,18-23). JENUS(T) does

not have an expert system; human participatiop is required
to make decisions when the model is used as a training tool.
SPARTAN resembles CASTFOREM in that no human participation.
is required (or allowed) once model runs begin.

Another design quality is how the model treats time.
There are tﬁo basic types of time processing, static and
dynamic. Static models do not consider changes to the
system as a function of time and thus do not represent time
(14:A-7). Dynamic models, on the other hand, explicitly
model the impact of time on system state changes.

CASTFPOREM, JANUS and SPARTAN are all dynamic models.
Dynamic models can further be broken down into time

step, event step, or closed form solution models (1:9).

Neither JANUS, CASTFOREM, or SPARTAN are closed form models,

which are models in the form of a set of differential
equations which have a closed form solution (14:A-7). Most
high resolution combat models are either time step or event
step models. In time step models, the model time keeping
iystem advances at a set discrete amount. At each time
change, the states of the system are updated based on the
new time (1:7,13:2-6). 1In event step modeling, as the model
finishes an activity, it checks to see what the next
scheduled event is. The model checks the time of that
scheduled event and advances the model clock to that time
(14:A-7,13:1-3,2-1). Theée are also hybrid time advance

mechaniams, where the model clock slows to match real time

26

advancement. SPARTAN, CASTFOREM, and JANUS are all event

step models, although CASTFOREM does allow time step
processing in some cases (14:Cl).

Another aspect of model construction is how the model
treats randomness, This is important to combat models
because what.is normally called the fog of war is actually
the uncertainty of battle because of fandom outcomes to
events on the battlefield (usually because of humsn
decisions) and a lack of perfect information. There are two

‘baaic approaches to treatihg randomness, models either

| ignore it, or consider it in some manner (14:A-10).
Deterministic models ignore randomness. Some processes do
not have randomness, in which case solﬁinq them
deterministic#lly makes senses. Most military.procesaes are
stochastic, not deterministic, however, and models must deal
with this property. Some models (expected value models) try
to do this deterministically, they ignore "the inherent
randomness in the stochastic processes by replacing all
random variables with determiniatic quantities (the expected
outcome) of the process™ (14:A9).

Most high resolution combat models use one of two ways
(or a combination thereof) to treat the stochastic nature of
combat. One method is known as the Monte Carlo method
(defined in Chapter I) (1:2-46;14:A-10). The other possible

way to determine the outcome is to calculate the results
directly. This may give more accurate results, but can be

costly in terms of computational time. JANUS and CASTPOREM

27

use both the Monte Carlo method and the direct computational

method in different pirts of the programs.

SPARTAN treats probabilities of acqﬁisition, detection,
hit, results of a hit, reaction to fire, and time till the
next évent'usinq the ﬁonte Carlo method and a Uniform (0,1)
random number. Line of Sight is deterministically computed.

Another way tq_classify models by construction is by
sidedness. A side in a combat model is a collection of
entities and resources used in cooperation to achieve a
 common goal (14:A-15). CASTFOREM; JANUS, and SPARTAN are
all two-sided models. They all have two sides that are in
conflict with each other. All three models are also
symmetric, both sides in the quels having the same relative
resources and the ability to employ them to some varying

degrea of effectiveness.

SPARTAN's Scenario

The scenario is one of the most important aspects of
the simulation. It §3tahlishes the environment of the
conflict, the terrain aspects, the force composition, the
systems played and the tactics involved. SPARTAN requires
no written scenario, mainly because the user establishes the
scenario when he runs the start-up program. 1In SPARTAN the
scenario includes terrain elevation and mobility, number of
red or blue soldiers, position, direction of movement,

weapon type, speed, posture or any other soldier attributes

28

| the user might alter. The user can alzo establish the

initial events the model will execute.

Data E Inf i
' The Data Base information requifgd for BPARTAN is very
small. SPARTAN requires only six look-up tables. There is
a probability of acquisition table (based on dbserver-targei
range and target posture), a probability of detection table
(based on 6bserver-target range, target posture, and time
duration of observation), and four probability of hit tables
{based on weapon type, range, and target péstute). These |

tables are not accessible to SPARTAN users and the only way

to change them is to reconstruct Cox's method of calculating

them and tecqﬁpute them.

Terrain Functions
The level of detail in modeling terrain should bs

consistent with the level of detail of the prdcasses that

- the model replicates (13:1-12). 1In line with this fact,
both JANUS and CASTFOREM model terrain in great detail.
Their terrain is digitized and has the attributes of
trafficability, elevation, and clutter (representing
vegetation), and includes such features as rivers. SPARTAN,
however, was not intended to offer such detail, but rather
cffar a broad outline of Qhat high resclution combat models
do. Therefore SPARTAN only represents elevation and

mooility.

29

ey AR TR : s e s

All three models use a grid terrain model to represent

terrain. In a grid terrain model, a grid of regular
polygonal grid cells is overlaid across the battlefield.
Bach of these cells has its own attributes such as clutter
factor, elevation, and trafficability factors (13:3-1,3-5).
CASTFOREM usually uses loom’aquaresvwith uniform att:ibutes
throughout the square (7:13), although squares can be
alterea in size depending on the scenario. JANUS also uses
squares (again size can vaty)(8:33). In JANUS(T),
attributes apply uniformly through each square except for
th. elevation. The'elevaiion'attribute mﬁrks the lover léft
corner of each square, elevation changes proportionally to
the distance moved from the markinq'corner and towards the
marking corners of neighboring squares.

SPARTAN divides its one xilometer square battlefield
into 2500 squares thit are 20 meters on a side. Elevation
and mobility factors are uniform throughout each square.
Only the mobility factor has an impact on movement, soldiers
do not slow for changes in slope. Elevation affects line of
sight and thus, target detection and engagement.
nghu_r;:mfeg. ,

The Army's FM 100-5}QBEEAIIONS has broken the
battlefield elements into seven battlefield operating
systems (BOS). These are:

1) Maneuver

2) Fire Support

30

3) Air Defense
4) Mobility/Countermobility/Survivability

$) Combat Service Support

6) Intelligence/Electronic warfare

7) Command and Control
The BOS all support one or more of the fundamenta1§ of
combat, "shoot, move, and communicate”. Modelg thaﬁ
replicate combat must simulate one or more qf thesg’-
fundamentals. These fundameﬁtals are usually modeled by
further breaking them down into multiple components known as
combat processes. The original SPARTAN replicated the
following combat processes: 4

1) Movement

2) Target Search

3) Target Selection

4) Direct Fire Engagement

5) Command and Control

Movement. Although movement is'in reality a continuous
function, most high resolution models represent it through a
continuous series of discrete steps. Both JANUS and
CASTFOREM model movement this way. In both models movement
is affected by entity attributes such as speed, posture, and
mobility and by terrain attributes such as trafficability,
vegetation, and slope. Both models also use maneuver
control points (8:277,7:140). Prior to model runs (or, for
JANUS(T), during model execution), routes are selected for

entities and maneuver ccntrol points designated along these

31

e

roﬁtes to control movement. Entities then move from point

to point along the route.* JANUS(T) attempts to move
entities 50 méters per move (mbdified by terrain and
obstacles). It then computes the time that the move would
have:taken, and schedules the next move for that entity at
that time (8:411-412). CASTFOREM also‘gttempts to move
entities set distances,‘but it is not locked into a set -
sequence of movement control poihts. It uses the Dykstra

"shortest Path" algorithm to compute routes (7:142).

CASTFOREM can also adjust speed to maintain formation within

units.

CPT Cox also designed SPARTAN to represent movement in
discrete steps. SPARTAN's movements were in 20 meter
increments, with the new location being computed by the

equations below (5:70):

xnew=x0ld+20xC0S (DIR) (1)

ynow=yold+20xSIN(DIR) (2)
- Where DIR is the attribute of each soldier that denotes
direction of travel.

CPT Cox used a method similar to that of JANUS by
making the time to move to the new position a random
variable. His computation of movement time involved the
speed of the soldiers (fixed at 20 meters per move), the
mobility factor of the terrain cell in which the soldier
started his move, and the soldier's postﬁre. Equation (3)

shows his move time calculation (5:72).

32

movetime=time+

RND(0,1) x100 (3)

speedxmobrlfactorxposture

SPARTAN used two different routines to control
movemen:t. In the aubroutine STARTMOVE, SPARTAN checked to
make sure the soldier was in a move status. If noi, the
subroutine ended and the next event on the event schedule
was called. 1If the soldier was in a move status, the new
position was computed, the graphics updated, and the time to
complete the move computed. Then a call to the subroutine
EﬂDHOVE‘was scheduled. At ENDMOVE, a random variable from a
triangular distiribution was used to determine the time to
the next STARTMOVE. A STARTMOVE was then scheduled for that
time (5:69-74).

CPT Cox acknowledged the following limitations inherent
in the low level of detail in his movement process
(5:72-74):

1) Entities move and stop in discrete steps rather
than move continuously.

2) Entities do not have the option of moving less than
20 meters, regardless of the situation.

3) Terrain slope does not affect movement. (This is a
realistic assumption given the tactical situation
and the nature of the entities.)

4) The mobility factor of the move is constant
throughout the move, regardless of whether or not
it changed.

5) Entity posture does not change after ENDMOVE and
before STARTMOVE.

6) Soldier fatigue is not a factor (A realistic
assumption in light of the short battle duration).

7) Movement is scaled for screen graphics.

33

|
}
|
|
|
|
|
|
|
|
\
|
|
|
|

8) Posture changes are instantaneous and do not affect
a move in progress.

Target Search. Target‘search is one of the most

important and most difficult aspects of combat to model. It

includes aspects of acquisition and detection. Detection is

 defined as the "event constituted by the observer's becoming

aware of the presence and possibly of the position and even
in some cases the motion of the target“ (13:4-1). There are
several levels of target acquisition within the above.
definifion of detection. These are (13:4-1-4-2):

1) Cuing information. This provides the observer
the approximate location for further search.

2) Detection. The observer decides that an
object in his field has military interest.

3) Classification. The\obserfar is able to
distinguish broad target categories.

4) Recognition; The observer is able to discriminate
between finer classes of targets.

5) 1Identification. The observer precisely identifies
' the target. '

When attempting to model tarqgt”icquisition and

detection, two significant characteristics about detection

must be taken into account. Pirst, th:ee physical
conditioné must exist: the ohserve; must have line-of-sight
to the target (there must be no obstructions blocking his
view of the target), the target must have a physical

.signature that the observer can detect, and the observer

must be looking in the right direction. The second

‘characteristic is that even if all three physical conditions

exist, there is no guarantee that the observer will detect

34

the target (13:4-3). Thus, search processes involve checks
for line of sight, checks to see if the target offers a
distinguishable signature, and checks to see if the observer
is looking at the target long enough to acquire it.

Line of Sight. Line of sigh£ (LOS) refers to
observer having an unobstructed view of the target. LOS can
" be blocked by intervening terrain or vegetation. It
qenerally‘"considers only the major land forms of the
terrain along with major vegetation" (13:3-3). In general,
LO8 checks consist of determin%ng the line between the
observers eye and some target height. Checks are made along
this line to determine if terrain or vegetation blocks it
(13:3-4). é

Both JANUS and CASTFOREM determine line of sight
deterministically. In JANUS(T{, the range from observer to
target is determined. The range is then divided by the
largest dimension (called d) oé the uniform sized terrain
polygon. This result givgs thJ number of terrain elevation
checks that JANUS conducts. The line of Qiqht is then
checked every d distance. If the terrain does not block the
LOS, JANUS checks vegetatiqn factors and degrades the LOS by
a percentage. If the remaining pefcentaqe does not ¢£fall
below some threshold, LOS exists (8:348-351). CASTFOREM
measuzr *s LOS differently than JANUS. It does not measure
straight LOS. Its LOS moves along vertical or horizontal

axes (like a step function). "This method is faster than

the tradifiénal straight line methode' o gy and has been shown

35

to statistically agree with it, when the grid square
resolution is at least 50 meters per side™ (7:6).

SPAKTAN's method of LOS checks is much like that of
JANUS. SPARTAN determines the equation of the line between
the eye of the observer and the top of the target. Terrain
elevation is then checked éicry 10 meters along this line to
see if the LOS is blocked. Partial obscuration is not
counted, if the top of the tﬁ:qet's head can be seen, then
the whole target is counted as being seen (5:75-77). Since
vegetation is not modeled, it has no impact on LOS. The
disadvantage to this method ig that it is possible for the
observer-target line to cross part of an intervening terrain
cell with blocking elevation and not fail LOS, because this
terrain cell falls between 10 meter checks.

Target Acquisition. 1If LOS exists between L
'observet and target, the model must determine if the :
observer detects the target. Both JANUS and CASTFOREM model
target acquisition/detection using the Night Vision
'7tlectro-0ptica1 Laboratory (NVEOL) detection model. The
algorithms used in the NVEOL model take into account target
dimensions, observer-target range, target-background
contrast, sky-ground brightness ratio, and visual
attenuation caused by atmospheric conditions (8:352-365).
The drawback to the NVEOL model is that the data for it was . ;
based on stationary observers looking at ponfiring
stationary targets. Therefore heuristics must be used to

deal with targets that are shooting or moving and observers

36

that are moving. Also, the NVEOL model deals only with
randomly selected observer-target pairs (17:26).

The NVEOL model is based on the idea of\how many
resolvable cycles an observer can detect on a potential
target. A cycle is a pattern 6£ light and dark bars of the
same width of the minimum dimension of the target. The
contrast of the light and dark bars is the same as the
contrast of the tarqef and its background (17:25). Using
the ratio of number of cycles the observer can detect to
some threshold level for level of detection, NVEOL computes

‘the probability of detection. ' _

The first step of the NVEOL model is fhe computation of
the attenuated contrast. This is the apparent
target-background contrast, after sky-ground brightness and

atmospheric attenuation has been computed (17:25).

targetcontrast (4)

attenuatedcontragt-
1+S0Gx% (evlm.l)

850G= Sky-ground brightness = 2.5 on a bright day

vis = atmospheric attenuation coefficient

range = observer-target range in kilometers

target contrast =z .2--.3 for visual targets
The attenuated contrast is then applied to a sixth degree
polynomial (in natural log) and multiplied by the width of
the target in milliradians (width of target in meters
divided by range in kilometers). This result is the number
of cycles the observer is able to detect across the target

(8:352-365).

37

The probability of detection‘ih NVEOL is based on twd
probabilities: the probability that the observer will detect
the target given unlimited time (called Pinf or Pl) and the
probability that detection is made at some time given tﬁe
target is detectable and the observer is looking at the
target (called Pfov or P2) (8:352-365). Th?vcalculation for
Pl is (17:26-27) .

TERM (5)

Pl T

where TERM = cycle ratio “power
cycle ratio = esoly erv
cycles for 50

power = 2.7 + .7 * cycle ratio

Cycles for 50 is defined as the number of cycles
required for 50% of the population to detect the target.
Cycles for 50 for various detection levels are listed below
(17:27): '

Bimple detection: 1 - 2

Recognition: 3 -5

Classification: 6

The equation for P2 is (17:26)

Pz.l-a-btm (6)

k = constant = 1/6.8
t = the time spent looking at some particular
field of view.

The overall probability of detection is a function of
Pl and P2

Pr (DETECT) =P1xP2 - (7

38

~r

Both JANUS and CASTFOREM use the NVEOL model in similar
fashions. During model start-up, every observer-target pair
is assigned a random threshold Pl level (8:352-365). This
has the affect of making the possibility of detection random
(some observers need to see more of a target than others
before they can detect it and observers will need to see
different amounts of the same types of targets to detect
them). Thern, as target detection/acquisition routines are
employed, Pl is computed determinisfically for each target
in the observer's search field. This is compared a§ainst
the threshold level. 1If his Pl is larger than the
threshold, a random search time for the field of view
containing the target is drawn and P2 is determined.

P2 is determined by tﬁe finld of search and by thg
random time spent in each part of the field of search.
CASTFOREM always conducts searches of 360 degrees. JANUS
uses a full 360 degree search when entities are moving, but
the field is cut to 180 degrees when the entity stops. Once

\

P2 is determined, the overall P(detection) is computedﬁ A
random number draw then decides the success or failure %f
"detection (8:352-365;7:7). Once a target is detected, both
JANUS and CASTFOREM retain it on the potential target list
unless the observer loses line of sight.

CPT Cox employed a simplified version of the NVEOL
model in SPARTAN. His method was proposed by Bailey, a
contractor hired to simplify the search routines of JANUS

and CASTFOREM (5:79). The proposed routine was never

39

implemented. Bailey's algorithm also employs two

probabilities: one probability (Pl) is the probability of

eventual detection given unlimited observation time (5:79)

and the other probability (P2) is the probability of

detection given the observer is looking at a certain field

of view fdr some random time (5:82).

'o“ ‘-c')."
Plel-¢ W

where C = target height/range to target

M= 3.5

~-.84 is a scaling factor added since no empirical
data was used on the sensory capabilities for

human eyesight.

-
P2=1-@ ¥ .8

whﬁre C and M are the same as above
t is a random variable ranging from (.4 - 4)

CP# Cox used MATHCAD to prepare a table for each

probabi}ity based on target posture and in ranges of 1006

incremehts. The table for P2 also moves time in increments

of .4 time units.

When SPARTAN called a search routine, the Pl for the

target range and posture was ochtained from the table and

compared to an arbitrary threshold of .2. 1If it was

possible for the observer to detect the target signature, a
random time was drawn (between .4 and 4 time units) and a P2
drawn from the table. A Monte Carlo trial then determined
if the target was to be added to the potential target list.

CPT Cox's search process was memoryless. Fach time the

40

- s R s N] I . f‘) l,’: . .
SN \\ N S / : i T e B ;
‘ \{ - - .) ’ ‘ VR . ‘ :
\ - ! - N -
\ AN v~ ; . - o .) .
N « P . # - ' 8
ke RO P N

entity went to the search rbutine, it was as if che entity
had never detected anyone, so his potential target list was
empty. SPARTAN's search replicated a €ull 360 degree field
of search. Also like JANUS and CASTFOREM, SPARTAN only
sought to identify foes, friendly soldiers were not searched
for and identified (therefor there was no fratricide
replication).

Target Selection. Once an entity has detected a
potential target, it must decide whether or not to engage
thgt target and with what weapon. 'If more than ohe target
is detected, then the entity must choose which target or |
targets to enqaﬁe. This is the purpose of target selection.
The problem with target selection is that there is "no basic
seminal theory" telling how to accomplish it (13:6-1). One
way to model target selection is the DYNTACS adjusted range
formula (13:6-3). In this method, targets are weighted by
their attributes, recent actions such as whether the target
has fired recently, whether the target is rnder fire from
another friendly clement and whether the target was in the
observer's sector of responsibility. Another method is for
target selection to be decided by user input }riorities
(13:6-4).

JANUS and CASTFOREM use dissimilar algorithms for
target selection. CASTFOREM uses a method similar to the
DYNTACS formula (7:11). JANUS(T) selects targets based on
the 8ingle Shot Probability of Kill (S8SPK). Tho first step

in the JANUS process is a check to make sure the iarget is

41

\
LA
\
/

within range of the primary weapon system. 1If the target is
within range, the observer checks remaining ammunition of

his primary wéapcn. If he is out of ammunition, he attempts

-target selection based on his secondary weapons system.

Once the type of weapon has been decided, the 3SPK of all
targets acquired by the observer is determined. ,mhé SSPK is
based on range, movement Status of both target and observer
and protection factor of target. If the SSPK is larger than
a threshold level of .05, target engagement begins
(8:371-372). |

SPARTAN uses a method similar to JANUS. Once an entity
has completed a search cycle and has one or more potential
targets, the SELECT subroutine is schgduled.v In the select
subroutine, all the P2 values for acquisition are summed up.
If the sum is greater than an arbitrary value of ;2,
selection continues. If not, a search is scheduled. 1If
selection continues, the P2 values are normalized so they
sum to one. A random number is then drawn to determine
which target the observer will engage and an engagement is'
scheduled. This target is then carried as an attribute on
the observer's attribute list (5:83-85).

Cox's use of probability of detection to determine
target selection intuitively seems to make sense in the
absence of rules of engagement, target priorities or sectors
of fire. Although he did not modify target detection based
on signatures (such as firing or movement), it seems logical

to engage the target that attracted most of the shooter's attention.

42

Nl

e ngagem.:nt. There are two basic types of
engagement: direct fire and indirect fire. 1In direct fire
engagements, observers have line of sight to their targets
and aim directly at them. In indirect fire'engagements,
gunners dec not have a view of the target and are aiming at
some coordinates, usually forwarded to them by someone who
has acquired the target either visually or by electronic
means. |

Direct Fire. All direct fire engagements are
modeled in much the same manner. Before firing, the
observer checks to see if LOS to his target still exiéts.

If LOS exists, the model performs a Monte Carlo experiment
to see if the shot (or shots) hit or miss the target. 1In
JANUS, the SSPK determines whether or not the round impacts.
CASTFOREM uses "a normal bivariate distribution with a bias
off the aimpoint and dispersion” and draws a random impact
point to determine whether the round hits the target (5:19).
When S8PARTAN's direct fire subroutine is called, it
first checks to see if LOS still exists. If LOS exists, the
entity is checked for ammunition. If he has ammunition, the
ammunition count is decremented by one and a look up table
is accessed for the probability of hit for the target range,
posture and weapon type (5:83-87).
(5'87?01 used the equation below to calculate his P(hit)

Pr(hit)=1-0 7 (10)

43

where -~ Rl=xdsy?

var = aim and ballistic error of round in both x
and y directions.

This formula assumes a circular target and does not
take target aspect angle into account. rhe P(hit) tables
-Wwere adjusted for target postures by adfustinq R by a
~percentage based on whether the target was prone or
crouching. ’

Once the P(hit) was determined, a random Uniform(0,1l)
variable was drawn to determine whether the round hit or
not. |

irec ‘ire. indirect fire is more complicated
than direct fire because artillery is an area effects |
weapon, not a point effects weapon (excluding guided rounds
like Copperhead). P(hit) is based on number of rounds
fired, center of impact of roﬁnds (center of sheaf), size
and aspect of sheaf, type of rounds (high explosive or
Improved Conventional Munitions), point of detonation (air,
ground, below ground) and protection factor of target.

JANUS incorporates the &ollowing into calculating
P(hit) of artillery (8:378):

1) Round to round ballistic errors.

2) Artillery formation)\and distance between firing
unit elements.

3) Para11e1 or converq% g sheaf.
When all rounds' impacts have been located, JANUS

determines a maximum effects box based on the imaginary box

44

Trr

. that contains all the rounds, plus an added factor based con ;-\/“
distance determined by target protection factor. 1In s

laddition, a suppression box is drawn 200 meters around the \
effects box (8:378). CASTFOREM determines indirect fire . %
engagement results much the same way (6:104-113).

The original SPARTAN does not médél indirect fire
engagements.

Impact Assessment. 1I1f the result of an engagement is ;*f\f
determined to be a hit, then an assessment of the damage ;';
must be accomplished. Lethality models used in high |
resolution combat simulations, simulate each round
individually (13:8-1). 1In some cases, such as when the v ;y
weapon is a machine gun, this round is actually a burst of ﬂ;?-
several individual bullets. Machine guns and automatic
cannon are modeled like this because the extreme resolution P
needed to model each bullet separately "would be prohibitive //f
for most force on force modelling purposes” (13:9-1). | jé&

There are basically two types of projectiles: impact
projectiles, which must hit.a target to cause damage, and

fragmenting projectiles, which explode and cause damage

either by the explosion or by fragments (13:8-1). PSS
For impact projectiles, a Bernoulli trial is compared /;if

to the SSPK to determine the level of damage to the target.)

In JANUS, elements of the target are either killed or not.

CASTFOREM is a bit more detailed, computing the exact point

of impact and determining the level of damage, either /'(

45 i

firepower kill, mobility kill, mobility and firepower kill,

or catastrophic kill (7:148).
Given that the round is a hit, SPARTAN uses a Uniform

(0;1)'random variable to determine if the target was killed
or wounded. Targets have a 30% chance of being‘killed'and a
70% chance of being wounded. Wounds are nbt cumulatiﬁe:
being wounded does not increase the target's chance of being
killed if hit again} Also, the target's posture and move
status do not change upon being uounded;

There are two different methods of calculatind damage
from fragmenting projectiles: the cookie cutter method and
‘he Carleton damage function. JANUS can use either method
(8:378-379). YCASTFOREM uses the Carleton function (7:150).

The cookie cutter method makeQ use of the fragment
sheaf discussed above. ’This sheaf is a function of sheaf
spread, round burst radius, and impact dispersion. 1f the
target is determined to be outside of the>sneaf, then no
damage is assessed.

The Carleton function computes P(hit) as a function of

the ratio of the miss area divided by the bursting area
(7:151, 17:78).

~iti sadistance®

A Bernoulli trial then decides whether the target is hit.
React to Fire. When a target is taken'under fire, and
detects that it is under fire, it will normally take some

action. This action could be to seek cover from the fire,

46

move to evade the fire, attempt to locate the scurce of.the
fire and fire back, or attempt to fire in the perceived
direction of the fire and suppress the attacker. This is
known as reaction to fire.

Regardless of the reaction, the effect of fire is
suppression. This means that the target under fire suffers
some degradation of performance because of its actions as a
result of fire. JANUS only models suppression as a result
of indirect fire. The effects are that the target‘can move,
but not shoot. CASTFOREM models suppression and resction to
fire for both direct and indirect fire. 1If the target has
sustained less than a catastrophic kill, decision tables
decide the appropriate action for the survivors to take
(7:150). ‘

SPARTAN models suppression by giving targets three
possible reactions to receiving fire. The target has 40%
chance of moving to a prone position and slowing his speed.
This models suppression as the prone posture inhibits
acquisition. The entity also has a 20% chance of reversing
directions and moving 20 meters. Finally, the target has a
40% chance of ignoring the fire (5:91-92).

a d Control. Command and control is the
ability of the decision makers in the model to influence the
battle. CASTFOREM, being non-interactive, models command
and control through myriads of decision tables and some
expert logic. Based on changing situations the model checks

the decision tables and alters instructions to subordinate

47

- A .
Tore £

§ntities (7:17—42).' JANUS, being interactive, does not
model command and control, depending on the players to mike
decisions.

SPARTAN has a limited command and control function.
One entity on either side can be designatéd aS squad leader;
If a squad leader is desiénated, all other entities on his
side will reoriént to engage targets that he engages. If he
dies, then the other entities reorient on their original

direction of movement (5:91).

Output
The type of output desired from the model should drive

model design. Simulations designed for training should
provide output that provides some indication of the success
of the trainee in meeting performance measures of'the task
on which he is being trained. simu}ations for analysis
should produce output that facilitates the analysis being

conducted,

JANUS' postproceésor produces up to 1l reports. These -

are (8:323-345):
i) Artillery Fire Report
2) Artillery Summary
3) Direct Fire Report
4) Coroner's Report
5) Killer Victim Scorecard
6) Heat and Chemical Casualties

7) Temperature and Workload Profiles

48

8) Minefields and Crossers
9) Engagement Range Analysis

10) Force Loss Analysis

11) Detections
Some of these are analyses of battle results which are left
over from JANUS' roots as an analytical tool and are of
limited value. The history files are useful for After
Action Reviews, as the training audience‘tries to see what
they did and when.

SPARTAN's output is very similar to JANUS'. At the end
of every model run, SPARTAN asks users 1if they desire to
review the four output files. The first file is a final
score card detailing start and end strengths, ammunition
remaining, number of hits on either side, and number of
wounded. The second output file is the final attribute list
for either side's soldiers. The third output file is the
final potential target table with final probability of
detection values. SPARTAN also produces a fourth, history,

file that lists event type, event time and event actor.

Summary

The original version of SPARTAN is a high resolution,
two sided, force-on-force, stochastic, event sequenced
simulation of dismounted infantry conflict. It models
movement, target search, target selection, target engagement
and some limited command and control processes. The

methodologies used to model these processes were derived

49

from those used in the current generation of high resolution
land combat models. On the whole, SPARTAN faithfully
represehted currént modeling methods, but there were some
areas that needed improvement. The next chapter discusses

how I planned to implement these improvements.

50

I1I. Model Development Process

Introduction
This chapter will describe the general model building

process used to create and refine SPARTAN. The first
section outlines the generil methodology used in creating
SPARTAN. The next section defines the modélinq problem,
model objectives, and some assumptions about the objectives.
This is followed by a discussion about model formulation
which specifically addresses SPARTAN's modeling environment
and model components. The next section is a discussion
about model develcpment, focusing on creation of the data
base, event set management, model enrichment, treatment of

"randomness, and development of instructional components.
The last section discusses SPARTAN's model assessment

processes.

\ o t o
‘3 Although SPARTAN was already designed and coded, the
X fact that I did not have access to the original uncompiled
\ programs and the numerous revisions to methodology and
. changes I made, make the SPARTAN essentially a new program.
The overall process required to build this new SPARTAN is
flowcharted in Figure 1.
The framework for simulation development applied to

SPARTAN was a combination of the simulation process

51

ANAT
—
.‘.‘A .‘
CREATE DEVELOP LEARN
SCENARIO MODEL PROGRAMMIN
S8TRUCTUR LANGUAGE
DETERMINE DEVELOP
DATA MODEL |
QUIREMENTS ROUTINES
PREPARE
l | DOOUMENTATION
INTEGRATE I
ummﬁgz ROUTINE
PREPARE
UBER
| VERIFY MANUAL
UPDATE Cooe
DATABASE
FIELD TEST

Figure 1 Model Development Process

described by Pritsker (19:11-12) and the conical methodology

described by Richard Nance (18:38-43).

Pritsker lists 10 st. s of simulation development (see

Chapter 1), six of which were applicable for SPARTAN

development (19:11-12):

1)

2)

3)

4)

5)

Problem formulation. The definiticn of the problem
to be studied, including a statement of the
problem-solving objective.

Model Building. The abstraction of the system into
mathematical-logical relationships in accordance
with the problem formulation.

Data Acquisition. The identification,
specification, and collection of data.

Model Translation. The preparation of the model
for computer processing.

Verification. The process of establishing that the
computer program executes as intended.

52

6) Validation. The process of establishing that at
desired accuracy or correspcendence exists between
the simulation model and the real system.

The conical methodology essentially subdivides

Pritsker's steps one and two into substeps, more clearly
defining problem definition and model building. An

extracted outline of the conical methodology is ptesentéd in

Figure 2.

I. Statement of the study objective

A. Problem Statement
B. Objectives and assumptions about objectives

II. Modeling Envirorment
A. Modeling effort available/requirex
B. Modeling Assumptions
l. Boundaries
2. Interaction with environment

III. Model Description

A. ldentify the objects and their attributes
B. 8ubmodels with possible sublevels

VI. Model Validation and verification Procedures

A. Validation tests
B. Verification criteria and tests

V. Model experimentation

Figure 2 Conical Methodology Outline

ble on
The first task of both model development methodologies
is a determination of {he study problem and an "explicit
statement of the objectives of the analysis™ (19:11). 1In
this instance, the problem was identified in Chapter II as

53

- "to continué devélopment of SPARTAN, and improve its value

as an instructional tool for high resolution land combat

modeling courszes”.

Once the problem is clearly defined, the modeler mugt

. decide on the quectives of the simulation. Having the
‘problem of continuing development of SPARTAN, I decided upon

the objectives enumerated in Chapter‘I: portability,
simplicity, applicahility, and useability. ' |
Portability is the degree to which SPARTAN can be ;
transferred from computer to computer. This means that |
SPARTAN must be small enough to be carried on a single d%sc

and written in code readily available to most users. Wiéh

this objective in mind, I decided that SPARTAN must be

: i
capable of running on all IBM XT compatible computers (512K)

with EGA minimum graphics ability. PFor this reason, SPAATAN
was written in QuickBASIC, and complied into an executable
(*.exe) file. . |

A Simplicity is the degree to which the workings of
SPARTAN can be readily followed and understood by the user.
This is mainly because the intended audience of SPARTAN is
the beginning combat modeler, who may have only limited
knowledge of combat prccesses or computers. For this
reason, the number of processes and entities inveolved in

SPARTAN was kept to a minimum. Also, simplicity eliminated

the necessity for excruciatingly detailed or extraordinarily

accurate replicaticns of reality and allowed simplifying

assumptions about data and processes. The objective of

54

simplicity also allowed mé to eliminate the option of human
input during simulation runs.

Applicability means that SPARTAN ﬁust accurately
portray processes like those found in the current generation
of high resolution land combat models. Given the
limitations in computing power caused by the first
objective, SPARTAN could not and did not need to completely
recreate JANUS and CASTFOREM. It did need to accurately
represent the techniques used by those models in such a way
that novice modelers could understand them.

Usability is a combination of the other three
objectives. Usability means that SPARTAN can meet its
intended function of teaching modelers about high resolution
land combat modeling. The model must allow users to alter
inputs and conduct sensitivity analysis (as is done in
"real"™ models). SPARTAN also required extensive |

documentation so that users can grasp what the model was

 doing and how the model was doing it. The graphical

representation of model activities had to enhance, not/
complicate, understanding of model processes. SPARTAN also
had to allow the user to query it about the current state of
the system. The model had to be capable of producing output
about the ending system state. Lastly, the model had to run
faster than real time so that replications could be easiiy

done.

55

Model Formulation
nayinq identified the problem and model objectives and

assumptions about chose objectives, the next step of the
model building process was the formulation of'thevmodel.
Thi§ included identifying the modeling environment and the
mddel definitions and developing the model itself.
Modeling Environment. The first step of mﬁdel
formulation is identifying the modeling environment. Thev
modeling environment inc;udes the_modelinqleffort and

modeling assumptions.

Modeling Effort. Assessing the modeling effort is
frequently the most overlooked and forg-tten aspect of the
modeling environment. Because of the nature of SPARTAN's
intended purpose, this assessment was not so much an
assessment of what measuzes of effectiveness SPARTAN was
required to produce, but rather an assessment of the time
limitation to finishing SPARTAN. SPARTAN was required to be
completed within 26 weeks.

Modeling Assumptions. Thig assessment, like that
of mbdelinq effort, was an effort to more concretely
identify the limits of model construction and thus
facilitate model formulation. The list below is not
comprehensive, but does enumerate the major limiting
assumptions I made in formulating SPARTAN:

1) Model Type. Because SPARTAN is designed for
instructing land combat modeling students, not
training experienced soldiers, no interaction with

the simulation during model runs was required.
(The model is not a man-in-the-loop). Por

56

Ry

this reason, SPARTAN was designed like a analytical
model, not a training model.

2) Model Domain. The model dom ‘n is the "physical or
abstract space in which the entities and processes
operate” (1:7). 1In keeping with the objective

of simplicity, I assumed SPARTAN's domain would be
land only. '

3) Model Span. SPAN is the scale of the domain.
EPARTAN's domain is local (as opposed to global or

theater). The area modeled is a one square
kilometer area. : :

4) Boundaries. The boundaries of SPARTAN are really
the scope of the modeled conflict. SPARTAN is
primarily a attrition model of small unit conflict.
Other than some indirect fire, no off screen
factors influence simulation outcomes.

5) Level of detail. 1In SPARTA! all events are decided
at the individual soldier level. No processes are
aggregated.

Mode]l Definition. Once the modeling effort and modeling
assumptions have been identified and the scope of the model
narrowed, the model must be defined. Models of systems have
"both a static and a dynamic description™ (19:11). The
static description defines the objects or entities of the
system and their characteristics. The dynamic description
defines how the objects and entities interact to cause
system state changes (19:11-12).

Static Description. The first step in model
definition is the decision of what objects can either change
the model state or cause some action to occur (5:45). Like
the previous version of SPARTAN, the objects and entities

are:

1) Terrain cells--The data records for terrain
representation. Since the 1 km square

57

area is represented by square cells 20
meters on a side, there are 2500 cells.

2) Events--The records controlling actions of the
model ., ;

3) Soldiers--The operational entities. A maximum of
12 soldiers are allowed. ,

Each of these objects is characterized by gttributes,
which more fully desctibg the capabilities or type of
object. Determining the number of attributes each object

required was a function of the model objectives. The number

had to be sufficient to meet these objectives without being

superfluous. Objects' attributes are listed in Tables 2-~-4.
Table 2 Terrain Attributes

ATTRIBUTE DESCRIPTION RANGE OF VALUES
1l Mobility factor 1 -1.0

2 Background contrast .5 -1.0
3 Elevation 60m - 110m
Table 3 Event Attributes
.
1 Event type l -9
2 "~ Event actor 1l - 12
3 Event time 0.0 - 9999.0

The system also.has attributes. Like the attributes of
objects, system attributesidescribe the charactetistics and
state of the system. SPARTAN's attributes are listed in
Table 5.

Dypamic Description. The dynamic description

"defines how the objects of the system interact to change the
system state. In SPARTAN, these activities fall into three

58

Table 4 Soldier Attributes

ATTRIBUTE DESCRIPTION RANGE OF VALUES
1l Side l = BLUE, -1 = RED
2 Duty position 1=8SL, 2=ASL, 3=GRNDR
4=AR, 5=zRifleman
3 Horizontal coord. 0.1 - 999.99
4 Vertical coord. 0.1 - 999.99
5 Number of Grenades 0 - 32
6 Time last fired wpn 0.0 - 9999.99
7 Posture prior to direct fire engagement
8 Movement Direction 0.0 ~ 6.28 radians
9 Movement status l=moving, O=not moving
10 posture l=standing, 2=crouching
3= prone
11 Weapon type 1=M16A2, 2=AK74, 3=SAW
4=M203, 5&6=user defined
12 Rounds in magazine M16=30, AK74=40,
SAW=200
13 Number of magazines Ml6é & AK74 = 6
SAW = 3
14 Selected target 0 - 12
15 Wound status 2 =alive, 1 =wounded
0 =dead
Table 5 System Attributes
VARIABLE NAME DESCRIPTION
time ‘ simulation clock
bluecount Current number of BLUE alive
redcount Current number of RED alive
termevnt number of events processed
categories. The first category consists of those activities

that are assumed to occur instantaneously, meaning that they

do not cause

the simulation clock to advance. These events

are not scheduled activities and are not put on the event

list. They are usually sub-activities of scheduled events

and are used

attributes.

to update or alter object and system

These activities are listed below:

59

A}

Instantaneous Activities
Line of sight (LOS): This activity checks for

intervening terrain or vegetation between observers

and potential targets. There is no partial line of

sight, it either exists or it does not.

Detecting obstacles

" Determining target posfure (and thus size)‘

Determining observer-target range

Determining probability of detection

Developing taréet lists

Decrementing ammunition counts

Determining probability of hit

Determining round impact oﬁtcomes

Plotting entities on screen

Plotting engagements on screen

Changing soldier posture and direction

Calliqq indirect fire

Intra-squad communication

The second type of actiVity is the time duration
activity. These activitiés regquire time to accomplish and
are thus scheduled on the event calendar. 1In SPARTAN the
time unifs are generic, th;j>a:e not related to seconds or
minates. This scheduled time represents the completion time
of the activities. Within the scope of these activities are
the many instantaneous activities. '

Time Duration Activities

Search: This activity is actually a continuous
activity modeled as a discrete event. Every soldier
performs a search every 20-30 time units. New search

60

cycles are scheduled after unsuccessful searches or
after engagements.

Select: This event is scheduled after a successful
search cycle, when the observer must assess his
potential targets and pick one to engage.

Direct fire: This event is scheduled by the
select event. Soldiers must stop, aim, and fire at
their targets.

Move: This event determines a new location for the
soldier performing the activity and computes the time
to start the next move (finish the current move).

React to fire: This event is scheduled by the direct
or indirect fire engagement. Targets determine they
are being engagediand react in a stochastic manner
based on their current posture and move status.

Indirect fire: This event is scheduled by the BLUE
squad leader when he detects one or more targets. Time
is required to reference the firing data, rrepare the
rounds and for the rounds' time of flight.

Change direction and formation: This event is
scheduled by either squad leader when they select a
target to engage that is more than 25 degrees off their

direction of travel. The squad leader fires, then
decides to directjhis squad to alter their direction.

Breach obstacles:f When a squad hits a wire obstacle,

it takes time to preach it. Squads change their
posture and move status until the breach is affected.
The third type of activity consists of tasks reguired
to perform system maintenance activities. These activities
are not scheduled, but occur as part of the overall system
activities.
System Maintenance Activities

Initialize data sets and event calendar

Select the next scheduled event and delete it from the
calendar

Ensure simulation clock does not advance past passage
of real time

61

Update the simulation clock

Add new events to the event calendar
Generate pseudorandom variables
Transfer program control to proper event subprograms

Terminate simulatién when terminating conditions are
reached

Store historical data for system status reports and
final output _

Process summarized data for final output
ev ment. Having decided on what objects and
enfities SPARTAN would have and the activities that these
entities would perfofm, the next step in the model
formulation stage was the development of the model itself.
This stage had three subprocesseé: building a database,
developing an event scheduling routine, and adding various

routines to perform the modeled activities.

Creating a Database. Tﬁis was the first step as

all objecfs refer to the database for their attribute values
(which, in turn, determine event ocutcomes). There are five
types of default data files, totaling ten files ﬁltogethet
(Table 6). These data files were not all developed up
front, several of them were built as new combat processes
were added and deterministic methods of deciding outcomes
proved too expensive in terms of computation time.

As data files were developed,vpreprocessors were added
to allow users to view and edit some of the data and créate
their own scenarios. CPT Cox had originally accomplished

this using record arrays, but elected to finally use ASCII

62

Table 6 Default Data Files

FILENAME DESCRIPTION (size)
mapl.dat terrain data file (50x50x3)
event.dat initial event list (99x3)
soldat.dat soldier attribute list (12x15)
Ml6.dat M16 Pr(hit) table (8x3)
AK74.dat AK74 Pr(hit) table (8x3)
SAW.dat SAW Pr(hit) table (8x3)
cor.dat Pr(acquisition) table (10x3)
INFW.dat Pr(detection) table for targets
in wooded areas (10x3)
INFNW.dat Pr(detection) table for targets
: not in wooded area (10x3)
THRESHOLD.dat target-observer threshold detection
levels (12x12)

files as record arrays were too difficult to view., I
decided to keep the flat file format, despite the greater
requirement for storage space. (Thiﬁ caused a memory
overflow problem when I attempted to compile SPARTAN,
because the data files were so extensive. The solution was
to make data arrays within SPARTAN "SDYNAMIC", thus giving
them memory addresses outside the 64K set aside by DOS for
the executable program.) |
Event Set Management. SPARTAN's default time

advance mechanism is the hybrid event step process described
in Chapter II. User's have the option of making SPARTAN a
strictly event step processing model however, through the
Alter Terminating Conditions menu. 1In either process, event
set management is the same.

CPT Cox listed event set management as the most
difficult task in designing the original SPARTAN (5:51). He
went through several versions before deciding on a double

linked list approach.

63

I spent several hours trying to figure out the double

linked list approach and whyiit was used in the original -
S8PARTAN. With only a maximuﬁ of 12 entities and five
scheduled event types, the event calendar rafely‘exceeded 30
events and ﬁas frequently less than that. Also, users could
not see the event manager functioning, so its value as a
demonstrator was nil. COnsequently, the double linked list
method seemed overly complicated for the number of
activities that needed to be scheduled and I did not use it.
Instead, I decided to use a simple event array that
contaiped only the scheduled event type, actor, ahd time.
As the current scheduled event is completed, at least one
type of time duration activity is scheduled. SPARTAN calls
the SCHEDULE subprogram and files the event in the first
empty EVENT ﬁrréf row. Program control then pisées to the
EVENT subprogram. Using the just scheduled activ;ty's start
time as a base, EVENT checks all occupied EVENT array rows
and identifies the event with the lowest start tiﬁe; This
event is pulled from the EVENT array row (which is then
zeroed out) and program control passes to the event
subroutine referenced by that event.

This method of event set management must check all
events in the EVENT array each time a scheduled event
completes. The advantage to my method is that the problem
and computational overhead involved in unlinking and
relinking lists as events are added and deleted from the

event calendar is eliminated.

64

Model Enrichment. There were actually two separate
programs to be built, the preprocessor and the simulation.
Although developed separately, the process of building both
was cyclic, involving building and testing code for a
module, adding it to the main program, refining it, and
going back to edit and debug previously written modules as
errors became apparent with new model tasks. |

The £irst part of the model to be developed was the
initialization subroutine. This subprogram ;ead the data
files and creafed the data arrays for the rest of the
program. To avoid the problems that CPT Cox had with data
integrity (5:54), I elected to keep all data values as
single precision values instead of a real/iﬁteger mix. This
caused no problems, but I had to be careful in the choice of
my values for comp~risons for IF-THEN statements.

Because SPARTAN was designed as an instructional toeol,
I felt that the graphical representation of the battlefield
was a very important part of the model. CQnsequntly, the
map screen was the first module to be developedt?fter the
data initialization module. Combat processes we&e then
added to the model in the order required to test itheir
performance. The first combat module added was the movement
module. This was followed in order by the search, line of
sight, select, direct fire engagement, impact assessment,
react to fire, obstacle breach, and adjust direction and
formation modules. In most cases, new modules caused

additions and revisions to previously added modules as

65

system activities became more and more complicated.
Debugging was aided by keeéinq code referencing future model
subprograms out of the current version of the model. 1In
addition, QuickBASIC has an excellent DEBUG feature and a
line editor that checks code as it is enterea. |
| A typical improvement cycle involyed creatihg a

subprogram and testing it in isblation. To do this, I wrote
a partial SPARTAN program to test separate ;ubroutinés. |
- Next, I added the subprogram to the main program. I also

Eadded code that caused written values and messages to appear

| on the screen as different decisions were made in the new

%subprogram. Revisions were made as necessary. No more
}subprograms were added until the current version‘of the
Emodel was functioning as intended.
E Randomness. Because SPARTAN is a replication of
%combaf, chance outcomes play a major role in simulation
glogic. Simplicity rather than accuracy, however, was the
?goal in dealing with probability distributions in SPARTAN.
Consequently, SPARTAN uses the QuickBASIC Uniform (0,1)
pseudorandom number génerator as the basis for determining
outcomes for all stochastic processes.
The most frequently used probability distribution was
“the Uniform (0,1) distribution. SPARTAN also employs the
triangular distribution function written by CPT Cox (5:56):
This distribufion was chosen because the transform
operation is efficient and the output can be used to
represent both skewed and symmetric distributions. The

function is given a low, high, and mode values and
returns a value within this range. The algorithm for

66

the transform was adapted from Pritsker (19:713).‘ This

transform provides a rough approximation to a normal

distribution when the mode is centered and the

extreme values are assumed to be within twe standard

deviations from the mean.

Although some event outcomes are derived using
deterministic methods, most are the results of a Bernoulli
trial. Probability of hit tables, probability of
acquisition tables, and probability of detection (given
targets are acquiruble) tables wete all computed beforehand.
These tables are referenced by the appropriate subprogrém
and compared .o the random variable. This method is similar
to ones used by both JANUS and CASTFOREM for vafious
weapons' dataz. In the casevof SPARTAN, these‘p:obability
tables are based in large part on actual accuracy data from
AMSAA and on NVEOL data. Some interbolation and
approximation was necessary, but overall the results are
close to the data used in more capable models. These tables

were originally created using MATHCAD templates, examples

of which can be seen in Appendices A-C.

Instructional Components

Since SPARTAN was designed as an instructional tool, it
has several features not normaily found in purely analytical
models. Some of these features can be found in the
preprocessor, which not only allows the user to alter
default data or create his own files, but is also designed
as an instructional device. Another feature, found in both

the preprocessor and the simulation, is the help file. The

67

’

third feature is the graphics of the simulation. Simulation

output also is an instructional component.

The Preprocessor. ISPARTAN's preprocessor, STARTUP.exe,
was created to allow users to load, view, or edit default
data files and to assist them in learning abouf what their

options are for altering default data. Basically,

STARTUP.exe reads the .dat extension data files into arrays,

allows the user to edit them, and creates .exp files for

SPARTAN to read.

STARTUP is menu driven and, like SPARTAN, has extensive -

help files. The four data files that STARTUP allows the
user to edit are the terrain data file, the soldier
attribute list, the initial event list, and the probability
of hit tables.
Terrain Editor. Unlike the first version of

SPARTAN, thevtertain attribute list is hard wired. Because
the data must match the graphical reptesehtation on the
screen for the screen to be meaningful, the data files are
closed to users. The terrain editor, however, is designed
to assist first time land combat modelers. It offers the
options below:

l) View map--allows the user to view the map.

2) Add obstacles--allows the user to add one wire
obstacle. Creates OBS file for SPARTAN.

3) View terrain dat--allows the user to view terrain
cell data.

4) View elevation data~-allows the user to see how

terrain cell elevation data dictates contour
lines. :

68

5) Line of Sight--allows the user teo pick observer
location and checks the line of sight for user
input ranges and fields of view.

The terrain data file is call MAPl.dat and contains 3
attributes for each of 2500 terrain cells as discussed
earlier.

Soldier Attribute Editor. The Soldier Attribute
Editor allows the user to accomplish tasks listed below:

1) View BLUE soldier attributes~-allows the user to
view selected BLUE soldier attributes.

2) View RED soldier attributes.

3) Add soldiers--allows the user to add soldiers (for
a maximum of 12 soldiers).

4) Delete soldiers.

5) Edit soldier attributes--allows the user to edit a
selected soldier's attributes. .

6) Pick formation and location--ailows to pick the
BLUE squad leader's location and one of four BLUE

formations. Automatically updates position data
for the remainder of the squad.

Probability of Hit Editor. The Probability of Hit

Editor allows the user to either review current Phit tables
or to create his own Phit tables. SPARTAN uses the Polya-
Williams approximation (10,13) to compute the single round
hit probability of a hit on a rectangular target. Then,
assuming each round within the burst is independent,
computes the probability of a least one hit for each burst
of fire.

Polya-Williams needs both vertical and horizontal aim

and ballistic error. STARTUP will show the raw error data

69

and the computed Phit for each weapon referenced by targetv
posture and range. ‘

Users can_aiso input their own weapons' data, but fhéy
need aim and ballistic error (vertical and horizontal) for
ranges of 100 to 800 meters (in 100 meter increments).
STARTUP will then compute and shdw the Phit tables.f For the
table to be used however, the ﬁser must alter at least one
soldier's weapon to reflect‘ﬁhe new weapon type.

Event List FEditor. Thé Event List Editor allows
the user to accomplish the tasks listed below:

l). View initial event list.

'2) Add events to initial list.

3) Delete events from initial event list.

The event list has an event type, time, and actor for all
scheduled events.

Help Menu. 1In addition to the aboﬁe options,
STARTUP offers help on all four subjects. Users can access
the help menu from the rain menu or from the editor in which
they are currently located.

SPARTAN. SPARTAN Aas three main instructional
components: the help ﬁen ., the graphical representation of
simulation events, and the battle statistics offered as
output during simulation iruns or after terminating
conditions are met.

Help Menu. The help menu in SPARTAN can be
accessed from the main menu. The help menu contains files

on each of nine combat processes: search, select, move,

70

direct fire engagement, indirect fire engagement, react to

fire, impact assessment, terrain representation and
obstacles, change formations, and general information about
setting up and running SPARTAN. These are usually several
screen paées in length and go into detail about simulation
‘iogic and equations.

Simulation Graphics. The simulation graphics of
the current version of SPARTAN differ greatly from the
original version's: the terrain looks like a military

1:50,000 scaled map, soldiers are stick figure icons of the

appropriate color, firing is represented by a line clearly
being drawn from the observer to the target accohpanied by a
burst of sound representing the number of rounds being
fired, indirecf fire is represented by a line drawn from the
firer to ﬁhe impact point and an explosion scaled to the
bursting radius of the rcund, and i '‘ons change cnlors when
killed (as they did in the original). All of thesé features
are designed to aid.users in understanding what each icon is
doing and thus understand why simulation results are the way
they are.

In addition to graphics, SPARTAN shows messages on the
top of the screen to reflect both simulafion activities and
player (icon) communication. The current simulation clock
time is shown in the upper right corner, as are the current
event and actor. Messages reflecting detection and squad
leader commands to his squad are shown in the upper left

corner, as are the results of engagements and the

i

71

probability of hit that caused the outcome."These messages .

too, help the user to understand model workings.

simulation run and after simulation terminatioh.

Qutput. SPARTAN offers output both during the

During

simulation runs, users have‘access'to the foliowing

information:

1)

2)

3)

4)

cﬁrrent soldier attributes. Translates current
soldier attribute values into Saglish for both BLUE

and RED.

Current potential target list. Shows the current
values in the potential target list. Allows the
user to assess who has acquired who, and who has
tried and failed to acquire who.

Shows the current event list

Current Event list.
(in order of execution) in English.

Current battle statistics. Shows the current WIA

and KIA status for both sides.

After the simulation‘terminates, the user also has the

option of reviewing the above tables and a Kill Card which

reflects how many soldiers were hit by weapon typé and the

maximum, minimum and mean range of hits for_each weapon.

SPARTAN also creates a history file.

This file contains

every scheduled event type, the time it occurred, and the

actor who performed the event.

sSsSm

Assessment of the new SPARTAN was much like that of the

original version.

Primarily it revolved around an

assessment of how well the original project goals were met

and how well it met evaluation criteria established by the

1979 GAO report on Defense Analysis.

72

———

S

£

ﬁl‘t\‘?:“: e

Tae e cmaeon

// f ..
o
o

‘s
/N
-

o0 /

woe

el

Yt~

o e e e e e
N 1 o -
. i .

LR

e e el
. s

Assessment Process. The assessment process for SPARTAN

took place in three phases. The first phase was an

evaluation by me. The thesis advisor then evaluated the
model and provided more guidance and suggestions as to focus
of effort and improveménts. The final assessment was the
same as used by CPT Cox, blind testing.

Blind Testing is suggested by James Dunnigan in his

book, The Complete Wargames Handbook, and involves a series

of laboratory tests performed by personnel with backgrounds
similar to those of the targeted audience. For SPARTAN, I
used two iterations of blind testing. 1In the first test,
three students of a land combat modeling course were issued
a copy of the model, supporting data files, and a user's
guide. Two students were Army officers with extensive
experience in small infantry unit operations. The third
student was an Air Force officer. The second group
consisted of three Army officers of mixed background
experiences. Students were given no verbal instructions,
other than to comment on problems with using the

preprocessor, understanding the user manual, or perceived

problems with mcdel operations. Improvements were made both

to the model and to its operating instructions after each

iteration of testing.

GAO Criteria Assessment. The GAO report lists five

criteria for use in evaluating models. These are:
documentation, validity, verification, maintenance, and

usability (11:9). These are discussed below.

73

Documentaticn. Documentation refers to the

documents énd comments that .accompany the model (12:27-29).
The purpose of doéumentation is to allow someone other than
the model builder to understand the model assumptions,
methods, and inner model workings. In this sense, SPARTAN
has two types of documentation. The first is the user's
manual and the help files in the preprocessor. and the
simulatidn. This documentation is_intended for the user who
does not wish to qét into the nuts and bolts of programming.
The second type of documentation is the thesis. This
documentétion is intended for the user who wishes to go into
great detail about algorithms and equations. | |

Most user's of SPARTAN will use the user's manual and
the online help as opposed to the thesis. The user's manual
and online help were designed to be used in concert with
each other; neither are stand alone documents. Using CPT .
Cox's findings,'I elected to make the user's manual more of
a general document about how té use SPARTAN and the”*””“““;““
preprocessor; It has narrative outlines about model
functions and methodology. The online help contains much
more detail about algorithms and equations used in specific
processes.

The thesis document was intended to provide a more
thorough discussion about model formulation (including
assumptions, goals, and limitations) and the specific
techniques used to model various combat processes. This

chapter accomplishes the former while Chapter IV discusses

74

in detail how modeling combatvprocesses was accomplished.

Appendices A-C contain the templates used to develop the
probability tables and Appendices E and F contain the
program code for the preprocessor and SPARTAN. All this
information should be enough to allow a user, familiar with
QuickBASIC, to begin altering code after a few weeks study
and should satisfy the GAO criteria.

validity. CPT Co# listed three types of validity
from the GAO report (5:64). These were data validity,
theoretical validity, and operational validity. This
version, like the original version of SPARTAN, makes no
pretenses of being a "valid" recreation of a small unit
combat. The objective was to demonstrate current model
techniques in the present generation of high resolution land
combat models. Nevertheless, I strove for as much data
validity as possible. Weapons' data,.for example} is the
same accuracy data used by JANUS and CASTFOREM. On the
other hand, acquisition data»is simulated, although it is
close to data used by "real" hodels. Therefore, SPARTAN has
only partial data validity.

There is also partial theoretical validity in SPARTAN,
as most of the algorithms are adopted from JANUS and
CASTFOREM documentation. However, even these algorithms are
suspect. A search of .ANUS and CASTFOREM documentation
reveals many heuristics and data used for purposes far
outside its original test conditions (the NVEOL applications

are a good example of this).

75

Operational validity does not apply to SPARTAN either,

as it is contingent on theoretical and data validity.

In SPARTAN's case, validity is the ability of SEARTAN
to meet its intended goal of providing a useful tool for
begihning land combét modelérs. Blind testing revealed that
this goal could be met.

Verification. Verification ensures that computer
code is performing its functions as intended. Verification
of code began with initial code testin§ before modules were
added to the main program. A special "little" SPARTAN was
developed for testing'subprograms. Then, after these
subprograms‘were added to the main program, parameters were
altered to simulate # wide variety of conditions to ensure
all parts of the program were functioning correctly. 1In
~ many cases I accepted limits that CPT Cox had established.
Blind testih§ turned a'few verification problems, as
outsiders applied previously unuséd scenarios to the
~simulation. Most of thése problems were quickly cortecfed.

Maintenance and usability are discﬁssed in the context
of meeting desién objectives belbw.

Model Objective Assessment. There were four
objectives in_desiqninq SPARTAN: portability} usability,
simplicity, and applicability. All of blind Testing group
felt that the gbals were met,

Portability. SPARTAN was designed to run on most
IBMs or IBM clones. 1t was tested on computers ranging from

the 286 it was designed on, to the 486 at the AFIT computer

76

s T e i SRR A S AR

laboratory. It runs much faster on 386s and 486s of course.

One result of this finding was the option of relating the
advancement of the simulation clock to the passage of real
time. This was necessary in order to slow simulation runs
§ and allow users to see and understand model functions.
Ugability. The objective of usability benefitted
the most from the blind testing. Having fresh eyes and
brains run the simulation really aided in making the model
user friendly. The preprocessor was modified greatly after
the first round of testing. All testers felt that the
simulation was usable and that moaelers would benefit from
the simulation.

Simplicity. Simplicity benefitted from the
structured programming that QuickBASIC allows. New
processes need only be written, fhen plugged in (or yanked)
as a module or subprogram of the main program in QuickBASIC.
Because SPARTAN is menu driven and user input is limited,
the program is very simple to operate, this also relates to
the previous objective. This objective also helps meet the
GAO criteria of maintenance, since modular coding, the
programming language, and simple algorithms make SPARTAN
easy to maintain.

Applicability. This objective goes back to the
validity issue. All processes were modeled on current
techniques and all data is real or as real as possible.
Testers felt that the processes were applicable and that

beginning modelers would learn by using SPARTAN.

77

Suhmarx

Designing SPARTAN was ah iterative process of model
formulation, coding, implementation, debugqinﬁ, and
modification. This development process was modeled after
the processes recommended by Pritsker and the conical
methodoloqy. Using these processes, the folloﬁing model
components were developed:

1) Input Data Files

2) STARTUP preprocessor

3) SPARTAN simulation with subprograms for:
-scheduling events
~initialization of data bases
-transferring program control to sub programs
~terrain representation
-target acquisition
-line of sight determination
~target selection
-direct fire engagements
-indirect fire engagements
-round impact assessment
-reaction to fire
-command and control
-online help
-battle statistics
-movement
-obstacle breaching

4) Model documentation
$) User's manual

The next chapter reviews how specific combat processes were
queled. :

78

IV. Combat Processes

Introduction

| This chapter focuses onythe algorithms and equations
used in SPARTAN to replicate specific combat processes. All
methods of modeling combat processes are based on techniques
uﬁed in the present generation of high resolution land
combat models. For each prcocess, there will be a
description of the technique (including formulas and
‘algorithms), a discussion of the limitations and assumptions
involved in the method, and a flowchart demonstrating the
algorithm. The processes are discussed in the general
subject order of move, search, shoot, and react for ease of

discussion of process flow.

Movement
Like JANUS and CASTFOREM, this version (as well as the

original version) of SPARTAN models mévement, a continuous
process, in discrete steps. Both versions of SPARTAN also
resemble JANUS and CASTFOREM in that movement is a function
of the moving entity's and the terrain cell's attributes.
This SPARTAN differs from the original version in that it
models obstacles and moves entities in a manner that

maintains unit formations.

79

Step Size. SPARTAN advances all entities 20 meters per

move, regardless of entity posture. The new entity location
is computed every move cyclé based on the two equations

below (10:40-15):

Xnew=Xo0ld+20xCOS (DIR) ' (1)

Ynew=Yold+20xSIN(DIR) (2)

The XOldland Yold represent the current horizontal and
ve:tical coordinates of eachventity and DIR reprLsents the
direction of movement of that soldier. All three are
soldier attributes. Unlike JANUS and CASTFOREM,?in which
entities change direction according to preset moLemeht
control points, the direction of each scldier remains

constant unless chanqed'by the squad leader. Mo%e will be

discussed about this subject in the section abou the CHANGE

DIRECTION AND FORMATION subroutine.

- Movement Time. Since the movement diatancelis constant

for every move, movement time is used to reflect variability

in movement rates. In SPARTAN, this time is a function of

the posture of the soldier, the mobility factor of the

terrain cell in which he starts his move, and a pseudorandom

Uniform (0,1) variable

mobilityfactor x posture

movetime=10+10 x

80

N T AR SRR

Since mobility factors range from .1-1} with lower values
having worse mobility and posture values range from .25-1,.
aq#in with reduced postures having lower values, the effect
is to increase travel time for the 20 meter ingrement for
decreased trafficabilify or reduced posture.

All movement times are decided by the squad leader for
either side. The designated squad leader is the first
entity scheduled for a move and his attributes dictate the
move times for the remainder of his squad. ?his was done to
maintain formation integrity for both Sides. This is a
realistic limitation, as the first command of the squad |
leader to his squad is to "follow me and do as I do".

Neither roads nor the slope of the terrain have an
impact on soldier movement times. This is not unrealistic,
as dismounted infantry moving in this type of scenario would
not be affected by slope or the presence or abggnce of
~ roads. Obstacles do affect movement.

Obstacles. Obstacles are input by the user in the
preprocessor's terrain editor. The only obstacle type that
SPARTAN recognizes is a wire obstacle {triple strand
concertina). Unlike JANUS and CASTFOREM, the only option
for soldiers who encounter obstacles intersecting their path
of travel is to breach the obstacle. Also unlike JANUS,
there is no such thing as a "friendly obstacle", obstacles
impede boih'sides, not just the enemy.

Because the movement time is determined by the mobility

factor of the terrain cell in which the move starts,

8l

soldiers do not realize that they are breaching until their

'-new location is computed. When a soldier detects that he is
in a terrain coll with 2n obstacle, the entire squad changes
into a prone-nonmoving Statué to begiﬁ breaching. In
addition, ail moves for that side afe deieted from the event
list and an ENDBREACH event is scheduled for 100 time units
in the future. At that time, the sgquad chanqes.back to a
standing and moving'status and moves for each squad member
are scheduled. | |
ové ent ocess. In SPARTAN, movement is
controlled by one subprogram cailed MOVE (Figure 3). This
routine accomplishes a number of actions including
determining movement times, updating soldier attributés, and

updating graphics. ,
The first function MOVE accomplishes when called, is to

check the status of the soldier to ensure that he can move.
If the soldier is in a nonmoving status, dead, or his side
is in a breach mode, the subprogram ends and ﬁroqram control
pﬁsses back to the main program to allow sequencing of the
next scheduled eﬁent. Some of these checks are redundant
(as dead soldiers should be in a nonmoving status), but were
left in the code to ensure that there was no programming
error.

MOVE then checks the soldier's attributes to ascertain
his screen location. If the soldier is on the screen, his
old position is erased. After computina the new location

based on the soldier's direction of travel, the new position

82

Sk 28 350 i ST i NP 0 R il 8

oo:wuvf NEW
UPDATE SOLDIEN
ATTRIBS
PLOT IOON
]

ﬁaﬁﬁiifﬁﬁﬁﬁaﬂ-—-———-qglub

OCOMPUTE
MOVETIME

SOMEDULE NEXT |
MOVE

Figure 3 Move Process

is plotted on the screen. This location represents where
the soldier will be at the end of the move time (beginning
of the next move event). MOVE then checks the terrain cell
attributes of the new location and, if there is an obstacle
present and the squad is not breaching, a BREACH is called,
all squad movement stops, and program ccntrol passes to the
next calendar event.
MOVE next checks to see if the soldier is a squad

leader. 1If he is, an outline is drawn around the icon (to
designate him as squad leader) and the move time for that

side is computed and scheduled for the squad leader.

83

Program control then passes to the next calendar event. 1If

the soldier is not a squad leader, his next move event is
scheduled based on his squad leader's previously determined

move time.

Limitations and Assumgtions. The low level of detail

in this movement process results in the fecllowing

limitations and assumptions:

l) Entities are in an iterative process of moving and
stopping rather than continuous movement.

2)' S8oldiers always move in 20 meter increments,
regardless of the situatiocn. 1In reality, there
might be cases where moves less than 20 meters
might be desirable.

3) Slope does not affect movement speed.

4) Trafficability is determined by the starting
terrain cell and is assumed to remain constant

throughout the move.

$5) Because the battle duration is short, soldze:
fatigue is not a factor.

6) Movement times are scaled to look "right™ and do
not reflect real times.

7) Computations are scaled for graphics.

8) If a soldier changes posture during movemen:, t* :
change does not affect the mcve in progress.

9) 8Soldiers cannot read terrain, and dc not alter

movement based on obsiacles, avenues of approach,
or cover and concealment.

Target Search

SPARTAN uses a search frocess based on the Night Vision
Elector-Optical Laboratory (NVEOL) model. Unlike the
origihal SPARTAN, this version of SPARTAN more closely
replicates the process used by JANUS and CASTFOREM. Like

84

movement, search is a continuous process modeled in discrete

steps.

Search is actually a three phased sequential procesc.
If the success threshold at any phase is not reached, then
that search sequence is unsuccessful and target detection is
not achieved. The three conditions for target detection
are:

1) The target must give off sufficient signature to be
detected by the observer.

2) The observer must have line of sight to the target.

3) The observer must be looking at the target.

This version of SPARTAN, like the original, assumes a
full 360 degree search pattern. JANUS also does this, but
changes the field of search to 180 degrees when entities are
stopped; while CASTFOREM's search pattern is a function of.
time. While a 3f0 degree search pattern replicates a squad
maintaining good security, it eliminates the effects of
focusing on sactors of responsibility or known enemy
positions and probably does not accurately reflect normal
soldiers’' search patterns.

This version of SPARTAN differs from the original in
that the search process is not memoryless. 1In the old
SPARTAN, every search process was new, soldiers did not
remember detecting any enemy on previous searches. Also, a
squad member's successful enemy detection did not improve
the probability of other squad members detecting that enemy
soldier. This version of SPARTAN attempts to correct this.

85

DN

VL et SRR g
> ok e

gQng1;1gn_Li_ﬁnﬁiigign;_ﬁigngig;g. The first condition
that ﬁust be met for successful target detection is that the
target gives off sufficient signature for the observer to
detect it. Like JANUS and CASTFOREM, SPARTAN assigns every
possible observer-target pair a random threshold level of .
resdlvable ~ycles (see Chapter II). Each of tbése thfeshold
levels is from a random lognormal distribution with the
unaetlyinq normal distribution having a mean of 3.5 and a
standard deviation of .698 (17:25-32). These random
threshold levels of resolvable cycles are theﬂ translated
into threshold levels of detection. This has the effect of
injecting rando@ness into the detection algorithm ahd caﬁ be

justified by the fact that some observers will discern

- targets more quickly than other observers (and by the same

thought, some targets are more discernable than others). The
observer's ability to discern a target given unlimited time
observing his sector determines whether or not'he exceeds
this threshold level. The computations for this.threshold
data are Appendix A.

The observer's ability to discern a target, called
Pinf, is a function of target-background contrast, observer-
target range, sky-to-ground brightness ratio (80G), and a |
atmospheric attenuation coefficient. The first step in
computing Pinf is‘to compute the attenuated contrast, which
is the apparent target-background contrast taking in the
above factors. This is computed by Equation (4) from
Chapter I1(14:25).

86

targetcentrast (4)
1+S0G x (GJMICCG % nm-]_)

Attenuatedcontragt=-

S80C is set at 2.5 (14:25) and the target contrast for the
visible spectrum is between .2 and .3. I used .3 for
nonwooded areas and 2.9 for wooded areas. The documentation
for JANUS(L) did not give atmospheric attenuation |
coefficients, so 1 experimented with various values and
settled on using .01. The results using these coefficients
seemed reasonable,

Once the attenuated contrast was computed, the next

step was to compute the target dimension in milliradians

- MinTytDim(meters)
milliradians) | (13)

Where the minimum target dimension was determined by target

posture (Table 7).
Table 7 Target Dimensions

POSTURE DIMENSIONS MINIMUM DIMENSION
Standing l1.8m x .8m .8m
Crouching .9m x .8m .8m
Prone .45m x .8m «45m

It was then necessary to determine the cycles per
radian, which is a function of a sixth degree polynomial of
the natural lcog of the attenuated contrast. Having
determined the cycles per radian and the radian per target.
dimension, it was then possible to determine the cycles
resolvable for the observer (cor) for different ranges and

target postures. These values were entered into tables by

87

target posture and range (in 100 meter increments) and for

the target background contrast (depending on whether the
tirget was in 8 wooded area or not); Caléulations for these
tables are in Appendix B.

Once the cycles resblvable for the observer (cor) was
determined, the next step was to detetﬁine the Pinf value
for target postﬁ:é, range, and backqfound contrast. This

was done using Equation (5) from Chapter Ii (14:26).

cor 3.70.7!%

Pinfe—3:2 — | (5)
’ 1" corzc"-"lm
3.5

Where "cor"™ is the cycles resolvable by the observer and 3.5
is the average cycles resolvable required for target
identifiéation. The calculations for this table are also in
Appendix B. |

- 1f the Pinf in the lookup table for the given rangé,
target posture, and background is greater than the threshold
level f%r the particular observer-target pair, then the
target is giving off sufficient signature and the search
process teats the second condition>£or'tarqet detection.

ggnLigign_lli_ning_gi_aighg. If the target is giving

off sufficient signature, then it must be determined if the
view of the target is blocked by intervening terrain or
vegetation. In the original version of SPARTAN, the
intervening terrain had no vegetation, only terrain

elevation could block line of sight. Also, SPARTAN only

checked LOS every ten meters. It was possible for an

intervening terrain celi to block LOS and not be checked if
the observer-target line cut across the terrain cell at some
angle other than a perpendicular one.

In this version of SPARTAN, LOS is checked in every
interﬁening terrain cell bhetween observer and target.

First, SEARTAN determines the observer elevation based on
his posture and the elevation of ths terrain cell ir which
he is located. SPARTAN determines the target elevation
based on the same attributes. SPARTAN then determines the
eguation of the observer-target line and the slope of that
line oased on these two elevations. Then, using the slope
of the line and the distance along thi§ line from the
observer, SPARTAN compares the elevation of every
intervening terrain cell tu see if it blocks the observer-
target line., If the terrain hiocks the line, LOS does not
exist.

SPARTAN also takes into account the‘vegetation of the
terrain cells in which the observer and target are standing
2s well as the vegetation in all intervening terrain cells,
SPARTAN first checks to see if the observer is in a wooded
area (denoted by a mobility index less than one). 1If so, it
ignores vegetation effects until the observer-target line
gets to a clear (non-wooded) area. Once the line enters a
clear area, any subsequent vegetation height is added to the
elevation of the terrain cell which contains it. This is
done using Equation (14). Depending cn the mobility factor,

89

) e —— .

PR et v AN ot > .t fw
b X A S A

' 0 Le
elevation-elevation+ BobIT1ty factor (14)

this might add 14-16 meters to the terrain cell's elevation.
This has the effect of allowihg L0s fo targets in tke same
wooded area the observer is in, but‘blocking LOS to targets

in other wooded areas.

Condition III: Detection. If the target is giving off

sufficient signature and the qbserver has'LOB, then it must
be determined if the observer deiqcts the target. Becauﬁe
of the randomness involved in this condition, SPARTAN
diteétly‘computes its existence.

Pi:st,.BPARTAN computes the probability‘of the target

being in the observer's field of view during this search

cycle (14:28-29).

Pfovt-l‘-a-"%‘ % 0oF X (1.7+3.4xRID) (15)

Were cor is the cyclesvtesolvablo by the observer determined
in Condition I and RND is a random Uniform (0,1) variable.
Then, using Pinf and Pfov, the probability of detection
is computed using Equation (7) from Chipter 1T (14:28).
P(detection) =Pinf x Pfov BN ¢ D)

SPARTAN then petfotmg a Bernoulli trial to see if the target

was detected.

SPARTAN Search Process. In SPARTAN, the search process

is controlled through two subprograms called LOS and
ACQUIRE. ACQUIRE is a scheduled event and determines if

90

203 ey e SRR DRI DR B TR NP A SRR i % B0 s N

target signature is sufficient, calls to Lbs to determine if
line of sight exists, and then determines if detection is
made.

When ACQUIRE is called, it first checks to ensure that
the observer is alive. If the observer is dead, then
control passes to the next scheduled event.

Next, the subproqﬁam checks to see if the observer is a
squad leader. 1If he is a squad leader and wire obstacles
are present, a call is made to the subprogram WIRE. WIRE
first checks to see if the current direction of travel
intersects a wire obétacle. I1f it does, then LOS to the
obstacle is checked and if it exists, a message reflecting
obstacle detection is shown on the screen. No other action
results from obstacle detection because no direction changes
are permitted. If the obstacle does not cross the squad
leader's path or if there is no LOS, no detection occurs.
After WIRE completes execution, control passes back to
ACQUIRE.

When the squad leader finishes obstacle detection or if
the observer is not a squad leader, SPARTAN checks all enemy
soldiers to see if the observer can detect them. First,
SPARTAN accesses the Finf and COR tables by target range,
posture and background. It then compares the Pinf to the
observer-target threshold level (Figure 4). If the Pinf is
too low, SPARTAN checks the next enemy soldier.

If Pinf is sufficient, ACQUIRE calls LOS to determine
if line of sight exists (Figure 5). 1If los does not exist,

91

10 OROTAOLE
SOAN M8Q

NOQ

| cowmurs amot[———/g ;&run. H, AaNOS / |

T THAESHCLD
Pint FROM TABLE
/g ORe-TaY Q/

Figure 4 Condition I of the Search Process

SPARTAN begins acduisition checks on the next enemy eoldiet.
1f LOS and Pinf conditions are met, SPARTAN checks |
Condition III (Fiqure 6) to determine it detection was

successful If detection was successful, the potential

target list for the observer is updated with the probability
of detection for that target, a message reflecting V
successful detection is shown on the screen, a'SEtECT
target event is scheduled (five time units from the current
time), and the observer continues to search until he has
attempted to detect every enemy target. 1If the detection
was unsuccessful, the search continues until an attempt has

been made to detect all enemy soldiers and then a new search

92

._Ioouvun aLoPdE OF

T T'HRAI

ADJUST BLEWATION

Pigure 5 Line Of Sight Process

" scheduled. The new search time is random fime between 0 and

40 time units in the fﬁfure.

Heuristics. One heuristic this version of SPARTAN uses
is the modification of the target dimension (and thus the
"cor") based on target's move and firing status. If the
target is moving or has fired in the last 20 tihe units,
SPARTAN doubles the target dimension, increasing Pfov and
the probability of detection. This heuristic is the sume
used by JANUS (Chapter 11) and has the effect of focusing

the soldier on a target area because of some target action.

93

Pigure 6 Detection Process (COnditio:‘III)
‘Anothor heuristic, developed for SPARTAN to account for

squad communication in the event of a successful detection,

is the moditiéationrr!Vtygwggtontial target list. 1In this

heuristic, the probabiliiy of detection is multiplibd by a‘
negative linear modifier (-.4) and put on the potential
target list for all soldiers on the observer's side. The
modifier is negative to reflect tha: detection has not
oecﬁrred for that observer target pair.

A third heuristic is employed in the event of a
unsuccessful detection (given Pinf and LOS exist). In this
event, the probability of detection is modified by
(-(5) and added to the observer's potential target list.

94

The reason for thies is to make the search ~“fects
cumul ative.

The results of these last two heuristics is that in
subsequent scarches, if the observer's potential target list
value for a particular target is negative, his probability
of detaction for a given target is increased because the
absolute valﬁe of the negative Pdet iz added to the computed
probability of detection befbre performing the Bernoulli |
trial. Thusg, if a fellow Qquad member detected a target or
if an unsuccessful search was conducted, the chances of
detection on subsequent searches is increased.

In addition to modifying the potential target list
values based on previous searches, the potential target list
value for a target is returned to zero if line of sight ever
is lost, either on a subsequent search ar in a direct fire
engagement.

Limitations and Assumptions. The following limitations
and assumptions exist in this search process:

1) Because of the many steps involved in computing

Pinf and cor, values are in table form.
Interpolation must be used for ranges not in 100
meter multiples.

2) 8ky-ground brightness ratio, atmospheric
attenuation factor, and background contrast ratio
are constants.

3) There is no partial line uf sight. If the observer
can see the target's eye, then SPARTAN assumes the
entire target can be sea2n.

4) Elevation throughout the entire terzain cell is

constant. It is possible for a target to be next
to 2 neighboring terrain cell and not be seen

bef§use of the elevation difference of the two
cells.

5) Linear modifiers used in heuristies for successful
and unsuccessful detections are arbitrary. They
seem reasonable based on experience, but no data of
any kind was involved in deriving them.

6) The heuristics ﬁsed for targets that are shooting
or moving are those used in JANUS (14:2-32), but no
data is present2d in the JANUS documentation to
support them.

7) Targets are always perpendicular to the observer.

Target dimensions are not adjusted for side or
off-center view points.

Iarget Selectjon

Once an observer har detected one or more targets, he
must decidevif ke wants to shoot at a target, which target
he wishes to shoot, and which of his weapons he wishes to
use. Target selection is the process that decides all of
this. The SPARTAN selection process, SELECT, is more like
the process employed by JANGS which uses ranqa} weapon
accuracy, and probability of hit to decide which target to
engage, rather thea the process employed by CASTFOREM, which
uses weighted decision variables.)

This version of SPARTAN is like the original version in
that the probability of detecticn value is used to determine
target selection. This is because the probability of
detection takes into account range to tavget, target
dimensions, and signature of target (target movement or
firing). Thus targets that are close, have fired, are
standing, or are moving wiil have larger probabilitiss of

detection than prone nonmoving targets. This corresponds to

96

a target sel on process wherein observers engaqebthe
target they perceive is most dangerous.

SPARTAN Target Selection Process. The subprogram
SELECT (Figure 7) acconplishez several tasks in SPARTZN.
It aelects’a target for engagement, schedules the
engagement, and, if the observer is a squad leader, may
scheduie a formation and direction change.' SELECT also

schedules indirect fire missions,

€AD OBIERVER
TARGET LIST

SOCHEDULE
INDIREOT
FIRE

| sonaoULS DIRKOT Fing |

CHANGE O28 POSTURE
TO PRONE.NCAMCVING

Figure 7 Select Proceas

97

'The first task that SELECT does 1; to check the

obaerver's potential target list and count all detected
targets (those with poﬁitive probability of detection
values). SELECT then normalizes the detected targets'
probability of detection values and useﬁ a random Uniform

(0,1) variable to select the targat to engage. This ensures

~ that targets with the highest probabilities of detection are

more likely to be selected. SELECT then schedules a direct

fire engagement for a random time (between four and ten

seconds in the future). This time accounts for changing

observer posture and aiming at the ﬂarget.

1f the observer is the BLUE aq@nd leader and has
detected mota.than two enemy ta:gotsk SELECT also schedules
an indirect fire event 20 time unitsiin the future. These
20 time units account for the tranai%tion of target

coordinates into tirihg data and for preparing and shooting

the ammunition. The threshold is -Jt at two enemy targets
because fire suppbrt is a valuable asset and should only be
used for multiple targets and because it is assumed that RED
soldiers are moving in formation. Lim1t1n§ indirect tire
requests to the squad leader simulates ﬁho fact that only
the squad leader has a radio to communicate to the next
higher command.

If the observer is a squad leader of either side,
SELECT schedules a formation change for 20 time units in the
future. This 20 time units allows the squad leader to fire

and then decide 1: his squad nesls to change formation and

direction to react to the threat posed by his seiected

target.

Limitations and Assumptions. The target selection

process used by SPARTAN has the following limitations and

assumptions:

1) 1I1f an observer detects a target, he will engage it.
There is no criteria for raximum range. This is
not unrealistic, as it causes target suppression.
In other scenarios, some fire restrictions might be

desired.

2) Observers have perfect range estimation for target
detection and selection.

Rirect Fire Fngagements
Unlike the original SPARTAN, thq new SPARTAN uses real

weapons' data for weapons in the current U.S8. and Russian

inventories. The default weapons' assignments are listed

below:
Table 8 Default Weapons' Assignments
WEAPON

POSITION ~ BLUE RED

S8quad Leader M16A2 AK-74

Team Leader M16A2 AK-74
Automatic Rifleman M249 RPK-74
Grenadier M203

Rifleman M1EA2

Accuracy data was obtained from the Army Material System's
Analysis Activity and translated into probability of hit
tables for each weapon, range, and target posture. All of

the weapons are burst fire weapons, that is, they fire more

99

than one round for each trigger pull., Soldiers do not have

the option of firing single shots.

Probability of Hit. The weapons' accuracy data from

| AMSAA consisted of the horizontal and vertical dispersion
factors for aim and ballistic errof (in milliradians) for
each range from which the weapon was fired. To convert this
data into probability of hit tables, I used the Polya-~

Williams approximation as outlined by Hartman and the

Polya-Williams assumes a :ectaqgulnr target.. It also

aasumes impact distribution is bivariate normal with the
mean miss distance in the horizontal and vertical directions
and bias equal to zero (13:7-18). |

The first step of the approximation was to calculate.
the total variance in the horizontal and vertical direction.

This was done throuqh equations (16) and (17)

0% 10" atn * 0% spatiisese (16) |

6%y=0" puin * 0% patiigric (17)
The approximation for a single round hit'is then

(13:7-18)

Phite [W Ve (18)
Where (13:7-18)

-3 L]
1-‘ BROy X0y

X (19)

100

(Lx is equal to half the target width.)

The equation for the Y term is similar, but>with Ly
equal to half the target height

1*,,”.-1-&':'3""‘_:3"‘;"f | (20)
"Once the single round prebability of hit was estimated
for the given range and farget posture, I assumed
: independence of each found wifhin the burst. This
assumption allowed me to compute the probability of at least
one hit for multi-round‘burete (10:20-13). Thus, the final.
probability of hit is o

Phit ;0 =1-(1-Phit,.0,) ° (21)
Where n is equal to the number of rounds fired in the burst
(three for each M16 and AK-74 burst and six for each M249
and RPX-74 burst). |

Some interpolation was neeeeeery to adjust Phit tables
80 that the ranges were uniform, but all tables are
reefeeeeced by eange and‘tafgeﬁwbeeture. The MATHCAD
templates for these tables are in Appendix C.

Grenade Launcher. In addition to processing rifle and
machine gun engagements, the SHOOT subprogram handles
grenade launcher engagements. The first step in the grenade
launcher process is to compute the impact point of the
round. This is done using accuracy data from AMSAA and two
triangular distributions. Two random numbers, representing

the horizontal and vertical miss distencee from the target

101

center of mass, are drawn from two triangular distributions

with modes of zero and end points equal to plus and minus
two standard deviations from the mode. These random numbers
are added to the horizogtal and vertical coordinates of tﬁe
target, which gives the impact point of the round. |

The probability of hit is determined using Carlton's
algorithm (17:78) and is a function of the burst radius of
the round (five meters for a M203 round) and the miss

distance (target location - impact point)

Phit-e‘_mfﬁg—‘!'—“ R (22)
SPARTAN Direct Fire Process. 1In this version of

SPARTAN, the SHOOT subprogram (Figure 8) processes all
direct fire engagements. Althouéh the bullet flight is
instantaneous, SHOOT is scheduled between 4 and 10 time
units after SCLECT to allow time for the observer to assume
a firing position and to aim at the target.

o The first task of SHOOT is to ensure that the observer
is still alive. Next, SHOOT computes the observer-target ‘
range and makes a call to the line of sight subprogram to
ensure that the observer can still see the target. If LOS
is obstructed, the probability of detection value for that
target is zeroed out, a search is scheduled (in a random
time between 10-20 time units), and program control passes

to the next scheduled event.

If LOS still exists, SHOOT then checks to see if the

observer has enough ammunition in his current magazine to

102

INOREMENT ROUNDOOUNT
OUOREMENT MABALINGS l

@ otRacT A

Pigure (8) Direct Fire Process

fire a complete burst, if not the observer must change
magazines. His rounds remaining count is incremented,
magazine count decremented, and a direct fire ongiﬁcmdnt'
rescheduled. Prograwn control then passes to the next
scheduled event. |

If the ammunition count is sufficient, the observer's

attribute #6 is updated to reflect the current simulation

‘time, this increases his signature ahd his probability of

being detoctgd by an enemy. Also, the observer's ammunition
count is decremented by the number of rounds he fires in a

burst (M16A2s and AK74s fire 3 rounds and SAWs and RPK74s

103

fire six rounds per burst). SPARfaN then goes to the

correct probability of hit table for the observer's weapon
type and draws the Phit value for the target range and
posture. Determination of whether the ehqaqement was a hit
or a miss is made by a Be:ﬁoulli'trial.

If the soldier is assigned an M203, SHOOT decides which
weapon system he will use ﬁo engage the target. If‘the
target is less than 300 meters away, the observer will use
his grenade launcher. 1f the range is tod great, he will
uso.his M16. An M203 engagement isvrepresented Sy a red
line drawn fromﬁthe observer to the impact point. This is

accompanied by a single explosion sound representing the

s . round iaunch. Next, a red circle will be drawn from the
impact point to the limits of the burst radius and-in |
explosion will sound. This represents round impact.
i ‘ .Direct fire engagements are represented by a red line
drawn from the observer to the target. A burst of sound,
~mj;~%~~m~w~ﬂ~ representing the numbef of rounds fired; accompanies the
line. 1If the engagement resulted in a hit, SHOOT makes a
- ‘ call to the impact subprogram and shows a "HIT Phit = ##§"

message in the upper left corner of the screen. If the

engagement was a miss, SHOOT schedules a react to fire for
the tardgt in three time units and displays the "MISS Phit =
$#4" message..

Regardless of the outcome of the engagement, observers

e have a 30% chance of reengaging a target in five time units

= and a 70% chance of starting a new move and search cycle.

— | 104

Determination is made by a random Uaiform (0,1) variable.

This accounts for shosters not alway$ being able to tell
whether or not their enqaqément was successful. After
shooting, observers revert to their prior posture.

Limitations and Assumptjons. SPARTAN's direct fire

engagement process has the following limitations and

assumptions:
1) All soldiers make perfect range estimation. .
2) |Wind effects on round trajectory are negligible.

3) | Linear interpolation of accuracy standard errors is

' isufficiently accurate for this model.

4) 3Rounds within a burst of fire are independent.

$) Soldiers will engage targets whenever>they acquire
' them. .

6) Bullet flight is instantaneous,
7) | Observers do not check to see if squad mates are in

the line of fire. The assumption is that they
would move or fire around their squad mates.

8) | SPARTAN only checks impact versus specified
' targets. Bullets that miss their intended target
" disappear. They do not continue on to hit other
potential targets.

Indirect Fire Engagements
Unlike the original SPARTAN, the new version models

indirect fire systems. The system modeled in SPARTAN is the
U.8. Army's 60 millimeter mortar, which is found in light
infantry units. SPARTAN models two of these mortars.

Indirect fire is only available to the BLUE side and
can only be called by the squad leader. Indirect fire

events are scheduled in the SELECT subprogram, whenever the

105

Y

BLUE squad leader has detected two or more targets. The

mortars are located off the screen map at the coordihates
X=-500, ¥Y=500 and can range the entire screen map. Ali
missions are immediate suppression missions. This means
that;éach‘of two mortars fires three rounds. There ﬁre‘no
adﬁhét fire missions or repeat missions. Also, all rounds
are point detonating, no time delay or aerial burst rounds
are ﬁodéled.

There are two elements of randomness injected ihto
indirect fire events, target coordinate error and ballistic
error. Target coordinate error is caused by the squad
leadef failing to give the target's actual coo:dinafes'to
the mortars' Fire Direction Center (the place where firing
data is computed). This error has a both a horizontal and a
vertical component and can be as much as 100 meters in
either direction. The coordinates given to thé'mortars'are

computed'by equations (23) and (24).

Y ooorainare=Yege* tT18g(~100,0,100) (24)

Once the rounds are fired, the ballistic error is

computed for each round. Each round has a ballistic error

"with a vertical and horizontal component, which are randomly

drawn from triangular distributions. The modes of both
distributions are zero, with the range error being much
greater than the deflection error. 1In reality, mortar fire

is a function of tube elevation, charge, air density, round

106

type, and wind. SPARTAN simplifies ail these errors to a
standard .04 millirad;ans range standard error and .01
milliradians deflection error. (These figurss are actual
errors for a 4.2 inch mortar on charge 3 at 100 meters.) To

cbmpute‘these errors I used equations (25) and (26).

errm@-triag(-.os,o, .08) '(25)

eIz, ipara~triag(-.02,0,.02) (26)

Because the mortars are located off screen and

perpendicular to the screen map's vertical aand ho;izontal
- planes, each rounds' impact point must be calculated using

the trigometric funétions-(Eqﬁations (27) and (28):

L

> Xinpct=Xege* (X, XSIN(O) +err,, xC0S($)) xrange (27)
Y impct™Y ege* (@X T xCOS(0) +err, XSIN($)) xxange (28)
THETA and PHI are the vertical and horizontal angles of the
gun-target line. ' ‘ '
/ Once all rounds' impact points have been calculated,
;ii SPARTAN employs the cookie cutter method to calculate the
probability of hit for all soldiers (friendly and enemy)
_ within the bursting radius (26 meters) of the rounds.
. In SPARTAN's cookie cutter method, the coordinates of a box
o | containing all of the rounds' bursts are determined. Every
soldier within this box is declared a casualty. Aall
I% soldiers within 100 meters of this box are declared
i;: suppressed (Figure 9).
v

107

tah
Py

_§+!=

SOX CONTAINING ALL ROUNDS 1MMOT OOORDINATES

?iqure 9 Indirect Pire Casualty Assessment

mﬂmmmm;. The first step of

SPARTAN's indirect firing engagement subprogram (Figure 10),
INDIRECT, is to determine the-giid coordinates of the target
that the BLUE squad leader sends to the mortars. SPARTAN
uses the grid location of the target selected for direct
fire by the squad leader and adds error terms is deicribad -
above.

SPARTAN then draws a red line to the modified target
location from the left edge of the screen. This line
represents gho gun-target l;nc. S?ARTAN then -ounds six
explosions, these represent the launching of the rounds.

S8PARTAN then computes the impaci point of each round
and plots the detonation on the screen. As impact points

are computed, the maximum and minimum vertical and

108

GALL ‘ OOMPUTE TGT ERAON
INDIREOT —/ READ TaT DATA Sy OO} AGJUSTED " TaT

OOMPUTE INDIVIDUAL] SOUND ROUNDS' LAUNOH
ROUND {MPAOT POINT DRAW LINE TO ADJUSTED
TARQET OOORD

OOMPUTE CASUALTY BOX
OOORDS

A AL . GALL IMPAOT
BOX TO ASSESS QASUALTIES

NO
|

NO

ars |
BUPPRESSION
8Qx

ALTER SOLDIER ATTRIDS SHOW MaQ :
T SHOW

QUPEKESSION

Pigure 10 Indirect Fire Proceas
horizontal coordinates are determined for use in calcﬁlatinq
the casualty and suppression box%s.

The casualty box is then dr&wn cn the screen. The
corners of the box are determined by adding 13.5 meters
(one-half of the burst radius) to!\the center of the maximum
and minimum impact coordinates. PARTAN determines if any
soldiers are in this box or in the suppression box. An
appropriate message is shown on the screen. If casualties

are declared, INDIRECT calls IMPACT ASSESSMENT. 1If

soldiers are suppressed, a REACT T0 FIRE event is scheculed.

109

After this, the screen is refreshed to remove the
explosions and control of the program passes to the next
scheduled event.

Limjitations and Assumptions. The limitations and
assumptions of the indirect fire engagement proceés are
listed belowﬁ' | "

l) Calls fdr'fire are automatic when the BLUE sqguad

leader identifies two or more targets. There might
be instances when indirect fire might not be

desired. '

2) Because mértar accuracy is dependent on so many
factors, I simplified the ballistic error.
Although the simplification is based on real data
(from another mortar type), it is not valid.
Mortars are area weapons however, and accuracy is
not a overwhelming issue. v

3) The cookie-cutter method actually should be
employed for each impact, not the sheaf. This

simplification was for ease of computation, but
still effectively demonstrates the technique.

impact Assessment

Impact assessment (FPigure 1l) is not a scheduled event.
As SHOOT or INDIRECT subprograms assess a target as being
hit, IMPACT is called and the target is immediately assessed
as boihg either killed or wounded. After appropriate
attribute updates are made, control then returns back to the
S8HOOT or INDIRECT subprogram. ‘

Unlike the previous version of SPARTAN, the results of
being hit by fire depend on the target's previous status.
1t fho target was unwounded, he has a 308 chance of being
killed and 70% chance of being wounded. If the target was

already wounded, then his chances of being killed increase

110

:WANG! o0 I

TaT I8 WOUNDED
ADJUST TAT ATTRIBS

)

Pigure 11 Impact Assessment Prqcess

to 50%. The determination of casualty type iz made by a
random draw from the Uniform (0,1) distribution.

If the target is declared to be wounded, his woundl”"
status is updated and he is put in a prone nommoving status.
If the target is killed, his wound stitus is updated, he is
put in a prone nonmoving status, his icon is changed to a
grey color, and all of his scheduled events are pulled from
the event calendar. | |

If a killed target is a squad leader, then a change of
command is affected. SPARTAN searches for a designated team
leader and updates his position attribute to reflect that he

111

RIGOnE P
»

indirect fire event resulta in a miss.

is now a squad leader.
There are a few assumptions and limitations associated

uith.this process:

1) Once a targst has been wounded, his ability to

absorb punishment does not change. His chance of

being killed remains at 50%.

2) Although dead scldiers are prone and nonmoving,
they can still be engaged. Observers do not

discern between alive, wounded, and dead targets.

3) 1Impact assessment is obviously a tunction‘cf weapon

type and impact point. The probabilities of
outcomes referenced above are not based on any

valid data.

React to Fire

Reaction to fire is a scheduled event in SPARTAN.

is scheduled for three time units after a direct fire or a

fire in a stochastic manner, depending on their current

;tatuﬂ.
Table 9 Reaction to Pire Probabilities
| .
Standing Crouch Pr = .8
Prone Pr s ,2
Prone/nonmoving Pr = .}
No Change Pr = ,2
Crouching Prone Pr = .4
Prone/nonmoving Pr = ,)
No Change Pr = .8
Prone Prone/nonmoving Pr = .8
Ro Change Pr = .8

NOTE: Unless the reaction specifies a wmove status,
the target's move status is unchanged.

112

A~ | L

soldiorl roact to

<

Reactions are decided by a random Uniform (0,1) variahle.»

The values assigned to the reaction prokabilities are not
based on valid data, but seem plausiblé for the given
tactical situation, .

If the targeted Qoldier is a squad leader, then his
entire jquad emulates his reactive posture and move status.
This is in line with the "follow me and do as I do" command
the squad leader gives to his squad.

Change Formation and Direction

The last type of scheduled event in SPARTAN is the
formation and direction chahqe. This event is scheduled
during the SELECT target subproqram,‘whenever a squad leader
selects a target. The thought pfocess behind this event is
that the squad léader might want'to evaiuate the worth of
changing the formation aznd direction of movement of his
squad to bring more firepower to bear on the target that he

perceives as being most dangerous.

change Formation/Direction Process. The first function
of the DIRECTION subprogram (FPigure 12) is to assess whether

a formaticn and direction change is warranted. SPARTAN does
this by determining the observer-target angle from the squad
leader to his target. If this observer-target line is less
than 25 degrees off the current azimuth of travel, only a
formation change is directed. 1In this case, all ;oldiers'
position attributos are updated to reflect the new

formation. 1If the difference between these angles is

113

A T

locupyure oirreneEnce Bet . :ul |

AZIMUTH AND DINECTION
' OF TRAVEL
NO
NEW DIREOTION » AZIMUTH
UPDATE S8QUAD DIRECTION
. UPDATE 8Q0 FORMATION
OHANGE '35' D!TEOI’EOBMI':"
FORMATION

. Pigure 12 Changing Direction and PFPormation Process

greater than 25 degrees, then the direction of all the
soldiers on the aquad leadef's side are changed to the
azimuth of the observer-target line. A formation change is
alsﬁ directed. A message reflecting the side and formation
change is shown the upper left screen corner. The new
formation is "squad on 1150, teams in wedges”™. This
tormition allows all soldiers to bring fire to bear on the
squad leader's target.

fter a formation and direction change, a flag is
tripped and the squad leader must once again search for vwire
obstacles in his new direction. Also, the obstacle breached
flag is tripped and any obstacles that the squad encounters,

must be breached.

114

tatio . There are several

limitations and assumptions associated with the logic of
this process:

1) Location changes are instantaneous. Graphics are
not updated to reflect location changes. During
the next MOVE e7ent, soldiers might move more than
20 meters. This is not unrealistic as
soldiers must run to adjust formations in real
life. : ' ‘

- 2) 8quads sometimes change formations during breaching
operations. Because they are in a nonmove status,
a REFRESH is scheduled. '
3) As ranges close, squads change direction more

frequently as squad leaders select targets that are
on opposite sides of the enemy formation.

Command and Control |
 SPARTAN has no specific subprogram designed for

modeling command and control. Instead, the entire

simulation was designed to reflect the realities of small

_unit combat and the control that the squad leader asserts

~over his squad. Thus, command ;nd control logic and

limitations were imbedded in all SPARTAN procesqéa.i_

The squad leader dictates movement speed and direction
for his squad. This modﬁls the formation movement that
small units maintain and the fact that the sguad leader
controls the formation.

The squad leader directs formation changes based on his
perceptions. He also is‘the one with the radio and thus has
the capability for calling for fire. The call for fire is

contingent on the squad leader's acquiring multiple targets.

115

S

The squad leader also controls how his squad mdves. 1f
the squad leader reacts to fire by hittihq the prone '
position and ceasing movement, then his entire squad does

also.

Summary . _
In this‘chapter, I have outlined the methods that

SPARTAN uses to model various combat processes. The intent
was to provide a sufficient level of detail for the reader

to gain a understanding of the equations involved in the

 processes, the algorithms and decisions made in the

processes, how the processes intaract{ why a partiéular

technique ﬁas chosen for implementation, ind some of the

- limitations and assumptions of the processes.

116

-\
e
\

Introduction
This chapter concludes the SPARTAN thesis. The first

section summarizes the purpose and results of the thesis

work. This is followed by a list of suggested improvements

to SPARTAN.

Summary

This thesis effort was aimed at improving SPARTAN, a

high tesblution land combat model demonstrator, and making

it a more useful tool for land combat modeling courses.

Although the list is not exhaustive, the major improvements

of this version of SPARTAN over the original are listed

below:

1)

2)

3)

4)

5)

Greater terrain detail. PForested areas are
incorporated in the new SPARTAN. They affect
movement and target acquisition.

Obstacles. The old SPARTAN did not have obstacles.
The current version allows the user to input one
linear obstacle. .

Movement. The movement of entities is now tied to
formations. The rate of movement and placement of
soldiers is determined by the agquad leader. Also,
the squad leader can alter the formation and

direction of travel based on his target selection.

Target acquisition. The acquisition process more
closely resembles the NVEOL process used in the
Army's current generation of high resolution combat

models.
Weapon's data. Weapon's accuracy data is from the

Army Material System's Analysis Activity (AMSAR)
and is the same data used by JANUS and CASTFOREM.

117

6) Weapon types. SPARTAN now has a default weapons'
mix of five different weapons, 311 currently used
by the U.S. or Russia.

7) 1Indirect fire. SPARTAN now also modﬁls indirect
fire, both mortars and grenade launchers.

8) Command and cbntrol. Command and con£r01 15
modeled in greater detail than in the previous
version.

9) Reaction to fire. BSoldiers' reaction to fire is
modeled in greater detail and more realistically
than in the previous version.

10) Preprocessor. The preptocessor is much more user

friendly. It not only allows the user to view
data and alter it for ne:. scenarios, but also
serves as an instructional tool for terrain
"modeling and for terrain familiarization.

'11) Graphics. Oraphics are greztly improved over the

previous version. The screen battlefield resembl
. a map, which improves comprehension of model

activities. Also the icons and entity activities

are more clearly delineated, improving:
understanding of model activities.

In making these improvements, the objectives of

portability, ﬁsahility, simplicity, and applicability guided

all modeling decisions.

,WBQARTAN is portable. Written in QuickBASIC and then -

compiled, 1t§ data files and two oxecutghlo programs total
less then 500 K. Thus, it can be carried on all high
density disks and can be used on most IBM/IBM clone

computers.

SPARTAN is usable. Users of SPARTAN need only minimal

knowledge of computers and modeling techniques and no
knowledge of infantry tactics. The preprocessor and

simulation are designed to teach them about thé former

118

subjects. Thevmenu format also facilitates use by less

knowledgeable individuals.
SPARTAN is simple._ QuickBASIC reads almost like

English, thus SPARTAN's computer code is very easy to

‘understand. Aiso, the structured programming makes

.following model processes easy. The structured programming

also makes the possibility of future improvements more
likely. .
SPARTAN is also applicable. Al]l processes were modeled

|
: |
resolution land combat models.

on techniques used in the curreht generation of high

The result of meeting the design objectives and the
improvements listed above was a model which demonstrates ﬁhe

following:

I
- |
|
1) Time keeping and an implementation technigque for;
event set management and synchronization. i
|
2) Algorithms used to model movement, target
acquisition and detection, target selection, weapon
selection, weapon accuracy, direct and indirect
fire attrition, line of sight, reaction to fire,
and simple command and control decisions and
processes,

3) 8Stochastic technigues for refresentinq the
occurrence of random events and out-omes on the
battlefield.

4) Data requirements for model components.
5) An example of the componehts for a typical combat
model such as scenario input, a preprocessor, the

simulation model, various types of output, and
accompanying documentation.

119

Recommendations
Although SPARTAN is a finished model and is capable of

being employed for its intended use, there are several
improvements that could be made to further enhance its value
as a iearning'tool.' Because of the structured proqramﬁinq
design of SPARTAN and programming language (QuickBASIc),
making these improvements should be an easy task. Some of
these suggested improvements are:

1) Design a replication loop. Although designed as an
analytical model, SPARTAN currently only executes a
simulation once. uilding an outer replication
loop, with the capacity to store data from each

"simulation run, could improve its value for
simulation study.

2) Improve the movement process. Most high resolution
: models use movement control points to
direct movement. SPARTAN entities only change
direction in engagements. Implementing a movement
control point type process would enhance
scenarios.

3) ‘Incorporate some sort.of user interaction. Allow
users to direct formation changes or direction
changes.

~ 4) Design more terrain data bases. This involves
drawing the map and filling in the terrain data
array. The user could pick a terrain option in the
preprocessor.

5) Allow users to alter acquisition tables in the
preprocessor. Allow the user to alter the
sky-ground brightness ratios and target background
contrasts to simulata limited visibility
conditions.

6) 1Increase the number of entities allowable in order
to simulate entire squads on both sides.

7) 1Incorporate indirect fire for both sides.

8) 1Incorporate vehicles in the simulation (and also
anti-vehicle weaponry).

120

9) 1If user interaction is incorporated, ﬁse hidden
icons. Do not display RED icons until they are
acquired by BLUE soldiers.

This is only a partial list of recommended
improvements. There are many possible ideas, but the
original scope of the modeling project was limited to

prpducing a teaching tool, not a new video §ame.'

Conclusion
This modeling effort provides the military modeling

community with a high resolution land‘combat model
demonstrator. ?ollawing'the model development process as
outlined by Pritsker, a model was developed that is simple,'
usable, portable, and applicable. By using SPARTAN with'its
algorithms based on those used in the current generation of
high resolution models and its extensive help files and
other documentation. beginning modelers should gain a great
deal of insight about‘the uses and limitaticns of combat

models.

121

| B

This appendix contains the template used for creating
the threshold probability of detection given infinite time
to observe thé target area. The technique of assigning such
observer-target threshold values is used by both JANUS and
CASTFOREM. Using this technique,‘each\possible observer-
target pairing is assigned a random threshold level of Pinf.
This is then compared to the deterministically dérived
actual Pinf to see'if tha target is giving off significant
signature to be detected by that observer. This template
was written using MATHCAD 2.5 software. It shows the
calculations used to create the random cor level and then

displays a partial array of threshold Pinf values.

122

This MATHCAD template computes the random threshold Pinf
value for every observer target pair. It uses the triangle
distribution function to simulate the normal population called
for by JANUS documentation (17:25-27).

JANUS assigns a random threshold Pinf value to each
observer-target pair, u:ing a lognormal distribution

whose underlying normal distribution has a mean of 3.% and a
standard deviation of .698 (17:28). To replicate this

normal distribution, I use a triangle function with a

mode of 3.5, a lower bound equal to two standard diviations
below the mode (2.1) and an upper bound equal to 4.896.

i and j are the indices i =1 ..12 Jes=1 ..12

a is the lower bound a = 2.1

b is the upper bound b 1 4.896

d is thé mode d := 3.5

Since SPARTAN has 12 soldiers, there are 132 possible
observer-target combinations. For ease of matrix
manipulation, I will round out the matrix to 144 (12 rous
and 12 columns).

r is the 12 x 12 matrix of random Uniform (0,1) variables

r := rnd(1)
i,J

Now define some relations of the upper and lower bounds and
the mode.

e = mode - lower bound .' e :=¢d - a
f = upper bouvnd ~ lower bound f = b - a
- ¢ = upper bound - mode g :=b ~d

Next assign random numbers from the triangle distribution

123

S

i 7

function (based on the previously assigned random U(0,1)
variable) to the x matrix (12 x 12):

e | .5
X = ifr i -a ¢t [%'f'r] b - [%'f'[? -r]] ‘
S 1,3 f 1.3 TR

Since the random threshold is a lognormal variable,
substitute the exponential function of the random triangle

distribution.
x
i,
X iz @
12°(i-1)+J

This matrix becomes the métrix of threshold cor values for
condition T of target acquisition.

To test the distribution, I plotted a histogram of the
threshold values. ‘

X2 := sort(X)

'k is the number of hisotgram cellL

k i= (1 + 3.3'l09(144)) Kk = 8.123

Since k > 8, I round it up to 9 [_k t= 9

¢ defines the histogram cell width

max(X) - min(X) f
Cc = ¢ = 0.325 - = 0.35
k ‘ 8
k := 1 ,.9

intervals := 2.1 ¢+ ¢'(k - 1)
3

f := hist(intervals,X2) f =0
: -9

124

Histogram of Threshold COR values

40 . o o mean(X) = 3.292
.5
144
— . var(x): — = 0.585
. 143]
f

] | H [
2 intervals. S
k

This plot looks like a lognormal plot.

Remember that the mean number of resolvable cycles for
detection at any range is 3.5. The mean of 3.292 is pretty
close to this. Also the Standard Evror of .585 is close to
the standard error .698

Now transfer the random cor values into a 12 x 12 matrix

x = Xv
i.J 12°(i-1)+J

1285

To save time in the simulation, transfer the cor values
into Pinf values using the equation below:

X
1,4
2.74%,7 —
3.5
x
£,
3.5
pinfi =
i, ~ X
1,
2.74%.7 —
3.5
X
i.3
1+
3.8

This Pinf table becomes the threshhold level that observers
must exceed in order to meet condition I of the acquisition

process.

B S
N .

Below is listed one column of threshold Pinf values:

; pinfl
-8 i,1
- 0.164
Q.18
0.627 |
0.431
[0,434 |
Q.543
0.42

0.261
0,585

{0,253
0,301

[0.51

i 126

Appendix B: Probabijity of Acquisition Template

This appendix cqntains the template used to create the
cycles resolvable by the observer tables and the probability
of detection given infinite observation time 2inf) tables.
All calculations are b#sed on techniques used in the NVEOL
model as employed by JANUS and CASTFOREM. The appendix goes
through the calculations and assumptions and then shows the‘
cycles resolvable tabie and the Pinf table for targets not

in wooded areas.

127

The following MATHCAD 2.5 template computes the acquisition
tables using the NVEOL model algorithms. There are
three conditions for target acquisition: '

1) The target is giving off sufficient signature for
the observer to detect him.

2) The observer has line of sight to the target.

3) The observer is looking at the target during the
specified search cycle time. :

This template computes tables for use in calculating
meeting Condition I i.e. cycles resolvable by the observer
and the Pinf (probability of detection given unlimited time
to look at the target). To save computation time in the
simulation, these values are computed in increments of 100

meters.

I. Attenuated Target Contrast

The first step of the NVEOL target acquisition model is
to identify the range and the attenuated target contrast.
The latter is a function of target-background contrast,
sky-ground background contrast, range, and an atmospheric
i is defined as the array location pointer i :=1 ,.10

r is the array of ranges from 100m to 1000 m (in km) r

Now calculate the attenuated target contrast using the

equation (17:26):
‘targetcontrast

attenuatedcontrast :=
1 ¢+ 2.5 (exp(r-.01) - 1)

where 2.5 is the sky-ground background contrast for a
bright day. The JANUS documentation did not provide any
values for the atmospheric attenuation coefficient, so
after experimentation, I used the value .01.

Target contrast values range between .2 and .3. I used .3
for targets in wooded areas and .29 for targets not in

wooded areas.

128

ac2 :=

acl is the target attenua;ed contrast for targets»in wooded
terrain.

I3

acl o=

i 1+ 2.5 [exp[r -.01] - 1]
i

ac2 is the target attentuation contrast for targets not in

wooded terrain
29

i 1+25 [exp [‘.’ --.01] - 1]
| . ,

These equations result in the attenuated target contrasts
below:

Target in wooded area Targst not in_wooded area

0.299 .289
0.299 ‘ , 0.289
0.298 0.288
0.297 ' 0.207
0.296 0.286
‘acl = 0.296 ' ac2 = 10.286
0.295 : 0.285
0.294 0.284
0.293 0.284
0.293] ' : .283

II. Cycles Resolvable by the Observer

The cycles resolvable by the observer is a sixth degree
polynomial function of the attenuated contrast, the range
(in km) and the minimum target dimension. First compute
the sixth degree polynomial:

k := 0 ..5

' 6=k
corl := E ln[aci This gives the cycles per
i milliradian for targets not in

k wooded areas.

129

< 6-k| This gives the cycles per
cor2 = E lnjac2 _ milliradian for targets in
i ' i wooded areas.

.

To get the actual cycles resolvable, the numbers computed
above must be multiplied by the minimum target dimension and
divided by the range. This gives cycles per target
dimension by range.

target posture height width minimum dimension

standing 1.8m .8m .8m
crouching .9m .8m .8m -
prone .45 .8m .45m

Remembering the heuristics of doubling the dimension if the.
target has fired during the last 20 time units or i3 moving

. the target posture array becomes:

tgtpos := (.8 .45 1.6 .9)

Now finish computing the tables of cycles resolvable
by the observer: ‘

J =1 ,.4
1 ' 1
corl := —'corl cor2 = —'cor2
i r N i r i
i ' ' i

corla := corl tgtpos
corz2a := cor2 tgtpos

Now we have the tables for cycles resoivuble by the observer
for various ranges and target postures.

130

Cycles resolvable on a tar9e£ in a wooded area:

Standing Standing
POSTURE Crouch Prone Crouch Prone Range
' @.116 5.128 18.231 10.255 100m
4.646 2.614 9.293 5.227 200m
3.157 1.776 6.314 3.552 300m
2.413 1.357 4.826 2.715 400m
v 1.967 1.106 3.934 2.213} 500m
corla = 1.67 0.939 3.339 1.878 600m
1.458 0.82 2.915 1.64 700m
1.299 0.731 2.598 1.461 800m
1.176 0.661 2.351 1.323 S00m
1.077 0.606 2.154 1.212 1000m
The last two columns designate target who have just fired or
are moving.

Cycles resolvable on a target not in a wooded area:

Standing Standing

Posture Crouch Prone Crouch Prone _ Range
11.701 6.582 23.402 13.163 100m

5.954 3.349 11.907 6.698 200m
4.038 2.272 8.077 4.543 300m

3.081 1.733 6.163 3.467 400m

- 2.508 1.411 5.015 2.821 S00m
cor2a = | 2.125 1.196 4.251 2.391| 600m
1.853 1.042 3.705 2.084| 700m
1.648 0.927 3.297 1.854 800m

1.49 0.838 2.979 1.676 900m
L1.363 0.767 2.726 1.533 1000m

These numbers look feasonéble. despite the educated guesses
on several coefficients. (The average cor for
target i{dentification is 3.5.)

II11. Computing Pinf
The last step is to calculated Pinf, the probability
of target detection given unlimited time to search for the

target. This is only shown for targets not in wooded
areas:

i3

o 0.998
F , 0.888
- B 0.623
. 0.396
. jo.256
L pinf2 = 0.174
lﬁu 0.124
) 0.093
s 0.072
e I e - 0.057

v B the Woods).

cor2a

. Standing
e Posture Crouch Prone

0.927
0.463
0.204
0.105
0.062
0.041
0.029
0.021
0.016
0.013

o \ This data was fed into
~ INFNW.dat (for INFinte in the Woods and INFinte Not in

2.7+.7" —
3.5

This gives us the results below:

Standing
Crouch Prone_
1 0.999
0.998 0.932
0.974 0.719
0.902 0.492
0.791 0.331
0.666 0.23
0.549 0.166
0.45 0.124
0.37 0.097
0.308 0.077]

1,J

Range
100m
200m
300m
400m
S00m
600m
700m
800m
900m
1000m - : e

the Pinf tables INFUW.dat and

132

P iy

This appendix contains the template used to create

probability of hit tables for all direct fire weapons
modeled in SPARTAN. Weapons' data is based on actual firing
data obtained from the Army Material System's Analysis
Activity (AMSAA). The technigque uses the Polya-Williams
approximation and the negative binomigl function to derive
probabilities of hit for various ranges. This appendix
showe the raw accuraéy data, demonstrates the calculations,
and shows the final hit probabilities for all weapons

systems.

133

The following MATHCAD 2.5 template computes the ovobability
of hit for a multi-round burst of fire using Mi186A2 accuracy
data. ‘ ‘ :

I. Background

To compute the multi-round probability of hit for a
burst fire weapon, I used the Polya-Williams Approximation
suggested by Hartman in his unpublished lecture notes on High
Resolution Modeling

The Polya-williams Approximation assumes the target is
rectangular and is perpendicular to the gun-target line. It
also assumes the impact distribution is bivariate normal with
the means of the dispersions (both vertical and horizontal)
and the bias equal to zero. Using it the Pr(hit)

is (13:7-18):
Phit := JX‘Y a

where 2
Lx
-2'
2
ne
o x |
X =1 -e o (2%Lx = width of target)
2
Ly
- — - B
2
n'e
Yy
Y i= 1 - @ o (2xLy = height of target)

and ox and oy are the standard errors (dispersions) in the
Morizontal and Vertical directions.

IX. Data

Data for all weapons systems is from the U. $. Army Material

134

\(»A Py . 7

Ssystems Analysis Activity (AMSAA). All data is from man-in-
the-loop tests. Both firers and targets were stationary.

Firers shot from the prone unsupported position, then data about
dispersions of impacts from center mass aim points was
collected. The M16A2 data is presented below: '

Weapon Type: M16A2 ' .
Round: M855 Ball ' » :
Ranges: 25, 50, 100, 200, 300, 400, 500, 600 meters

PRONE UNSUPPORTED POSITION

DISTANCE BALLISTIC ERROR AIM ERROR
HORIZONTAL o VERTICAL o HORIZONTAL ¢ VERTICAL ¢

25 m 7.85 mils . . 8.98 mils 12.00 mils 12.00 mils
50 m 7.85 mils 8.98 mils 7.2 mils 7.2 mils
100 m 7.85 mils 8.98 mils 4.7 mils 4.7 mils
200 m 7.85 mils 8.98 mils 3.5 mils 3.5 mils
300 m 7.85 mils 8.98 mils 3.1 mils 3.1 mile
400 m 7 .85 mils 8.98 mils 2.9 mils 2.9 mils
500 m 7.85 mils " 8.98 mils 2.8 mils 2.8 mils
600 m 7.85 mils 8.98 mils 2.7 mils 2.7 mils

To make accessing the probability of hit tables easier,
I extrapolated the accuracy data so that hit probabilities
are in increments of 100 meters from 100 to 800 meters.
This results in the dispersion table below:

SPARTAN M16A2 accurac; data

DISTANCE BALLISTIC ERROR AIM ERROR
HORIZONTAL ¢ VERTICAL ¢ HORIZONTAL ¢ VERTICAL ¢
100 m 7.85 mils 8.98 mils 4.7 mils 4.7 mils
200 m 7.85 mils 8.98 mils 3.5 mils 3.5 mils
300 m 7.85 mils .98 mils 3.1 mils 3.1 mils
400 m 7.85 mils .98 mils 2.9 mils 2.9 mils
500 m 7.85 mils .98 mils 2.8 mils 2.8 mils
600 m 7.85 mils 8.98 mils 2.7 mils 2.7 mils
700 m 7.85 mils 8.98 mils 2.6 mils 2.6 mils
800 m 7.85 mils 8.98 mils 2.5 mils 2.5 mils
135

III. Calculations

The first step in computing the Phit is to define the arrays
of input data:

-]

e -

100 7.85] 8.93 4.7

200 7.85 8.98 3.5

300 ‘ 7.85 8.98 3.4

_ 400 |7.85 8.98 2.9
range := |500| ¢balx := |7.85| cbaly := [8.98] caimx := |2.8
: 600 7.85 8.98 2.7

700 7.85 8.98 2.6

i 8.98] 2.5]

800 | |7.85
caimy := caimx

Next, compute total error in the horizontal and vertical
directions using the ¢quation below:

At the same time, convert the variance in milliradians
to meters.

One milliradian deviation is equal to one meter of
error from center target at 1000 meters. Therefor
to convert mils to meters, multiply mils by km.

We now compute the total variance

i :=1 ..8
2
range range = total
i ‘ i variance in
o2x := lgbalx *'=———| <+ |gaimx the horizontal
i i 1000 i 1000 direction for

each range.

136

: 2
range ' range = total
i i variance in
a2y := |abaly '——! + |ogaimy the vertical
i ‘ i 1000 i 1000 direction for

each range.
The standard error in meters at different‘ranges;is'

Horizontal Error Vertical Error

o2X Range ‘ - |e2y

N i \ i

10.915 | 100m 1.014
1.719 200m 1.928
2.532 300m 2.85
3.347 400m 13.775
4.167 500m 4.703
4.981 . 600m . 5.626
5.789 © 700m 6.544
6.591 soom 7.457

Assume that targets (personnel) are rectangular and
approximately .8m X 1.8m. There are three target postures:
standing, crouching/kneeling, and prone. The width of the
target will not change based on target posture, but the
height will. The height factors are:

1 sStanding

J =1 ..3 posture = .5 Crouching
.25 Prone

Now compute our X values. Since

width := 2'Lx 0o where width = .8

Define Lx := _4

Using the Polya-Williams approximation:

137

Lx
W o2«

X =1 - e@

0.115]
l0.034
0.016
0.009
X = 0.006
{0.004
0.003
0.002

Now éompute the Y values. There Nili be three Y values

at each distance because of target posture.

Given the

target height (y) is 1.8m, we get the following values

for Ly at various postures and ranges:

stind
1-8
Ly 1= ™ 'posture

1.3 2 J

56O

Ly =

© O O.

Using the Polya-Williams approximation:

138

0O VOYOVO

crouch prone

0.45 0.225]
0.45 0.225
0.45 0.225
0.45 0.225
0.45 0.225
0.45 0.225
0.45 0.225
0.45 0.225]

| . vy

n /,/

Y :
1,5

Now the Y values are computed, compute the

=1 ~-e

Ly

i,J

1,3

n o2y

Target stand
Posture]0.213

0.066
0.031
0.018

Phit = [0.012

0.008
0.006
k.oos

-

single

crouch
0.116
0.034
0.016
0.009
0.006
0.004
0.003
0.002

Now, assume the rounds of the burst are independent and
compute the probability of at least one hit given multiple
rounds fired in the burst (3 rounds for the M16A2)(10:20-14)

pP3hit i= 1 - |1 - Phit
i,J

i,J)

This results in the table below, which is used by
SPARTAN to determine hit probability for the Miéa2 (firing a

three round burst) for various ranges and target postures.

Target
Posture

p3hit =

§tand
0.512
0.186
Q. 091
0.053
0.034
0.024
0.018

0.014

crouch prone

0.31
0.099
0.047
0.027
0.017
0.012
0.009
0.007

0.168

0.085
0.024
0.014
0.009
0.006
0.005

0.003]

100m
200m
300m
400m
S00m
600m
7°0m
800m

139

round Phit

prone_ Range
0.059 100m
0.017 200m
0.008 300m
0.005 400m
0.003 500m
0.002 600m
0.002 700m
0.001 800m

IV. AK-74

Using the same method as for the M16A2, I computed the
multi-round probability of hit for the Russian aAK-74

Weapon Type: AK-74

- Round: 5.45mm

Rangesf‘ : 25, 100, 200, 300, 400, 500, 600, 700, 8C0O meters

PRONE UNSUPPORTED POSITION

DISTANCE BALLISTIC ERROR - AIM ERROR

: HORIZONTAL VERTICAL ¢ = HORIZONTAL ¢ VERTICAL ¢
25 m 8.47 mils 8.9 mils 12.0 mils 12.0 mils
100 m 8.47 mils 8.9 mils 4.7 mils - 4.7 mils
200 m 8.47 mils 8.9 mils 3.5 mils 3.5 mils
300 m 8.47 mils 8.9 mils 3.1 mils 3.1 mils
400 m 8.47 mils 8.9 mils 2.9 mils 2.9 mils
500 m 8.47 mils 8.9 mils 2.8 mils 2.8 mils
600 m 8.47 mils 8.9 mils 2.7 mils 2.7 mils
700 m 8.47 mils 8.9 mils 2.6 mils 2.6 mils
800 m 8.47 mils 8.9 mils 2.6 mils 2.6 mils

Dropping the 25m data, this data resulted in the table of
hit probabilities below (for a three round burst):

TARGET POSTURE STANDING CROUCHING . PRONE

RANGE :

100m .493 .297 .161

200m 176 .093 .048 | |
300m .086 .044 022 ;
400m .05 .025 .013 |
500m ~.032 .016 .008

600m 023 .011 .006

700m .017 .009 .004

800m .013 .007 .003

140

IV. M249 and RPK-74 (Squad Automatic Weapons)

Using ;he same method as for the M16A2, I computed the
multi-round probability of hit for both US and Russian SAWS
(they both had the same accuracy data).

Weapon Type: M249 (US) and RPK-74 (Russian)
Round: 5.86mm and S5.45mm , 4
Ranges: 50, 300, 600, 900, 1200, 1500, 1800, 2100 meters

BIPOD SUPPORTED POSITION

DISTANCE BALLISTIC ERROR AIM ERROR
HORIZONTAL @ VERTICAL o HORIZONTAL @ VERTICAL ¢

S0 m 1.27 mils 1.41 mils 7.1 mils 7.1 mils
300 m 1.27 mils 1.41 mils 3.1 mils 3.1 mils
600 m 1.27 mils 1.41 mils 2.7 mils 2.7 mils
900 m 1.27 mils 1.41 mils 2.6 mils 2.6 mils
1200 m 1.27 mils 1.41 mils 2.5 mils 2.5 mils
1500 m 1.27 mils 1.41 mils 2.5 mils 2.5 mils
1800 m 1.27 mils 1.41 mils 2.4 mils 2.4 mils
2100 m 1.27 mils 1.41 mils 2.4 mils 2.4 mils

Because SPARTAN only models a maximum range of 1000 meters,
I interpolated for shorter ranges and dropped longer ranges,
giving the_altered accuracy data below:

DISTANCE BALLISTIC ERROR AIM ERROR

HORIZONTAL ¢ VERTICAL ¢ HORIZONTAL ¢ VERTICAL ¢
100 m 1.27 mils 1.41 mils 6.1 mils. 6.1 mils
200 m 1.27 mils . 1.41 mils 4.1 mils 4.1 mils
300 m 1.27 mils 1.41 mils 3.1 mils 3.1 mils
600 m 1.27 mils 1.41 mils 2.7 mils 2.7 mils
900 m 1.27 mils 1.41 mils 2.5 mils 2.5 mils
1000 m 1.27 mils 1.41 mils 2.5 mils 2.5 mils
1800 m 1.27 mils 1.41 mils 2.4 mils 2.4 mils
2100 m 1.27 mils 1.41 mils 2.4 mils 2.4 mils

141

—C

\ . '
RN . \

This results in the probability of hit table
round burst): ‘
TARGET POSTURE
RANGE
100m

200m
300m
600m
900m
1000m
- 1800m
2100m

STANDING

.958
.826

.725

I34

.189 -

.1566
.0585
.04

CROUCHING

.828
.603
.488
.19
.1
.082

.02

142

beloN (six
PRONE

.581
.368
.283
.1
.051
.042
.014
.01

Appendix D: SPARTAN Operating Instructions

General

This appendix is a user's minual for SPARTAN and can be
used (in conjunction with the SPARTAN and STARTUP hglp
screens) to run the SPARTAN simulation. This manual and the
ﬁELP screens are designed for use by students who have at
least a limited knqwledge of IBM PCs and high resclution
land combat modeling.

. SPARTAN is a two-sided high resolution land combat
model originally developed by Army CPT Dave Cox (AFIT GOR92-
M) as an instructioﬁalltool for use in a land combat
modeling course. It is intended to demonstrate current
modeling techniques as used by the Army's present generation
of high resolution land combat models. All‘algurﬁthms and
most of the data are representative of those used by the
Army's two premier models, JANUS and CASTFOREM. Tactical
formations, weapons' mixes and accuracy data, and decision
rules are as accurate and realistic as the author could make
them based on ten years of infantry experience and current
Pield Manuals. SPARTAN, however, makes no claim as to being
a true replication of reality. In keeping with the intended
purpose of the model, decision rules are simplistic and time
representation is adjusted so the model looks right. No
effort has been make to perform any validation of SPARTAN as

an analytic tool.

143

This User's Manual is organized into four sections.

8ection I is a discussion of SPARTAN construction and
modeling processes. Sectiqn‘II inciudes a discussion of the
~ default scenario and the eiistingydef;ult‘data filqs.
Section III contains cpétﬁtinq instfuctions for STARTUP (the
prepfocessoi). Section IV provides operatin§ instructions
for the model. More information about these topics can be
obtained through the HELP screens in the preprocessor and
SPARTAN and in the SPARTAN thesis.

_ =) cx ion .

SPARTAN is designed primarily like an analytical model
of a force on force conflict. The combat is between two
opposing squad sized elements in a 1000m x 1000m area. The
co#flict takes place in rolling terrain that is primarily
open, but that has some forested areas. The combat is
during daylight and obscuration is not a factor;

SPARTAN represents the following combat processés:
movement, target SéiféhfﬁfitééfWSETZEtion, weapon Selection -
and direcf fire engagement, indirect fire engagement,
reaction to fire, impact‘aasessment, command and cd;frol,
and obstacle breaching. All processes are resolved at the
individual soldier level. No processes are aggregated.

SPARTAN allows human participation in only two places,
the preprocessor, where the user can alter data files to fit
his scenario, and in the terminating conditions, which the

user can alter before beginning the simulation run. Once

144

the simulation begins, no user action impacts on model

outcomes.

SPARTAN uses an 2vent scheduling technique to
synchronize activities and maintaiﬁ time representation
within the model. Future events are maintained on the event
list which lists the events by type, actor, and time (time
being a generic time unit not related to minutes or
s?conds). Only nine types of events are put on the
calendar, these are listed in the fable belcw:{

i
Table 10 SPARTAN's Scheduled Processes

EVENT

Target Search

Target Select

Direct Fire Engagement !
Move ;
End Breaching Operation i
React to Pire

Change Direction and Formation {

i
|
1
i
i
I
t
i

Refresh the Screen
Indirect Fire

OQQG’IM&WNFE

All other events are instantaneous (the simulalion clock
doés not advance ﬁhen they are occurring). SPARTAN does not
use linked lists to keep track of calendar events. As a
scheduled event is completed, SPARTAN checks the calendar
for the next event with the lowest start time and executes
that event (after showing a message as to current simulation
time, event type and event actor in the upper right corner).
SPARTAN continues to schedulé and execute events until the

event list is empty or one of the terminating conditions is

met.

145

One modification to this event step process allows

users‘the option of letting the simulation execute as fast
as the computer éan process events or delgyinqvevent
processing by setting the ratioc of simulation time to clock
time (to a maximum of 1 to 5). This option éan Se turrned

off by altering the terminating conditions.
Force Composition. SPARTAN models a maximum of 12

soldiers divided into two sides, RED and BLUE. 8oldiers on

the screen are represented by stick figures of the
appropriate color. Squad leaders of either side are denoted
by a box drawn around the fithe. 801diers"gapabilities
and status are captured by the 15 attributes in the soldier
file (see Section III for a complete list of soldier
attributes). The default scena:io has 9 BLUE soldiers
organized and quipped as U.8. infantry and three RED
soldiers organized and equipped in the old Soviet style.
Organization and weapons are listed in Table 11.

Table 11 Default Force Composition

POSITION

_ BLUE RED
8quad Leader M16A2 AK-74
Team Leader 2 x M16A2 AK-74
Automatic Rifleman 2 x M249 RPK-74
Grenadier ' 2 x M203
Rifleman ’ 2 x M16A2

In addition to the squad's organic weapons, the BLUE side
has the advantage of the use of two 60mm mortars. These

mortars are not represented on the screen and are notionally

located off the screen map.

146

Terrain Representation. The terrain used in SPARTAN is
1 one kilometer square area loosely based on a U.S.Army
1:50,000 scaled map of Germany. Terrain is represented bf a
50 x 50 system of square grid cells. Each cell has a
horizontal (east-west) coordinate and a vertical (north-
south) coordinate numbered from 1-50. Each cell also has an
elevation, a mobility factor, and a visibility factor.-
These attributes allow the model to represent terrain relief
features and to adjust movement and target detection.

The SPARTAN screen is read juﬁt like any military map.
The lower left corner is GRID 900 000 (read X coordinates
first and Y coordinates second) and the upper right corner
is GRID 1000 1000. Magenta lines are spaced every 200m to
aid in distance referencing during the simulation. (These
lines might not appear to be square because of how differgnt
monitors and computer models bsreak down horizontal and
vertical resoclution.) The colors on the map are those used
on military maps (Table 12).
TABLE 12 MAP COLOR TRANSLATION

COLOR REPRESENTS

Blue water

Green forests, wooded areas
Red manmade objects (roads)
Black roads

Brown Contour intervals

147

7

The contour interval for this map is ten meters.

Elevations range from 60 to 110 meters, To provide more
realistic representation of terrain, mobility, visibility
and elevation are not constant in like areas. For example,
visibility and mobility decrease as you go deeper into
wooded areas and elevation rises as you get closer to next
higher contour interval. Roads and streams have no impaéf
on movement and are only provided for user refe:enée.
Movement. When a soldier's attributes are set for
movement, he will move in a direction and speed designated
by his squad leader. All moves are in 20m increments, with
the movement time for these increments varying with soldier
posture and the mobility factor of the.terrain cell in which

the movement starts. The squad leader designates the

.movement spesd for his entire squad.

Search. BSPAR'TAN uses a continuous search.process based
on the Night Vision Electro-Optical Laboratory (NVEOL) model
used by JANUS and CASTFOREM. In SPARTAN this is a

continuous process, with every soldier conducting a 360

degree search every 20-40 time units. Soldiers search only -

for enemy soldiers, therefore there is no need for
identifying friends or foes.

In order for target detection to occur three conditions

must be met:

1) The target must give off sufficient sisnature to be
detected by the observer.

2) The observer must have line of sight to the target.

148

3) The observer must be looking at the target.

The NVEOL model is based on something called number of
resolvable cycles. A resolvable cycle is a pair of
contrasting light and dark panels laid across the minimum
target dimension. Different numbers of resolvable cycles
are required for different levels of target detection. For
example, identifying that somethihg is th&fe requires less
cycles than identifying that something is a specific type of
tank.

S8PARTAN, like JANUS and CASTFOREM, assigns every
possible target-observer pair a random threshold probability
of detectién given time (Pinf). This has the effect of
making some observers' acquisition of some targets easier
than others and injects probability into the acquisition
.process, To detect a target, the observer must be able
exceed the thrushold level of probability of detection for
that target. Both of these numbers are in lookup tables.
The threshold level is referenced for each target-observer
pair and the deterministically derived Pinf is referenced by
target posture, range, and background contrast{

If the target is giving off sufficient signature or if
the observer has already tried and failed to detect the
target, SPARTAN checks the line of sight from the observer
to.the target. Line of sight (LOS) can be thought of as a
line drawn from the observer's eye to the eye of the target.
If no intervening terrain or vegetation breaks this line,

then SPARTAN assumes the entire target can be seen; there is

149

7 /\) - . ' N e T PR 7 7 S
' B S e T T U ; .
P <. L,

no partial line of sight. SPARTAN checks LOS in every
terrain cell]l between observer and target.

If LOS exists, SPARTAN determines if the observer was
looking af'the target during that particular search event.
A random time is drawn and the ﬁrobahility_of detection is
calculated. A Bernoulli trial determines if the target was
detected. If the target was acquired, the target is added
to the observer's potential target list, a SELECT TARGET
event is scheduled, and a fraction of the probability.of

detection is added to tie other squzd members' potential

o
-target list to simulate;intra-squad communication about the

target. Also, a messaq? is shown in the upper left corner,

i
telling that either a RFD or a BLUE soldier has detected
| .

~ enemy at some grid coorginate. If the target was not

detected, a fraction ofgthe probability of detection is

added to the observer's potential target list to simulate

already searching that area once. This incréaaes the
probability of detection in suhsequent searches.
'xgggg;_gglgggign. Once one or more targets has been
detected by a soldier during a search cycle, a TARGET SELECT
is scheduled. All the probabilities of detection for the
observer's potential tarqeﬁs a.e normalized and a random
Uniform(0,1) variable decides which target will be engaged.
That target is added to the observer's attribute list
(attribute #14) and a DIRECT FIRE engagement is scheduled.
1f the observer is the BLUE squad leader and he has two or

150

more potenfial targets, an INDIRECT FIRE event is also
scheduled.
Direct Fire Engagement. Dirgct fire engagements begin

with a check to ensure that LOS still exists between target
and observer. If LOS still exists, SPARTAN ensures that the
| observer has sufficient ammunition to engage the target. 1IPF
not, SPARTAN changeé magazines (decrements magaziné count
and incréments the round count) and reschedules a direct
fire engagement. If LOS exists and the observer has
ammunition, then the observer shoots at the target.

SPARTAN represénts direct fire by a f&d line drawn from
the observer that closes on the target. A burst of:sound‘
that represents the number of rounds fired accompanies the
line. In SPARTAN, M16s and AK74s fire three round bursts,
while Squad Automatic Weapons (SAWs) fire six round bursts.

The M203 gunner makes a decision as to whether fire his
M203 or his M16. If the range is less than 300 meters, the
gdnner uses his qtenadé launrher. This is reﬁtesented by a
VQAAMI;ne connecting the observer and”the impact point, a red
‘circle drawn at the point of impact, and an explosion sound.
The screen is then refreshed.

The results of direct fire engagements are determined
by a Bernsulli trial. For all weapons except the M203, a
random number is drawn and compared to probability of hit
tables that are referenced by weapon, range, and target
posture. The hit/miss results of the M203 engagement are

determined using the Carlton method where the probability of

151

hit is determined by the ratio of the miss distance to the

burst radius of the round. 1If at least one round hits the
target, an IHPKCT ASSESSMENT is,schéduled. After an
engagement, a hit/miss message and the probabilify of hit
will appear in thé uppef left corner.

After an engagement, the observer has a 30% éhance of
reengaging the target or a 70% chance of moving and
searching agaiﬁ. |

Indirect fire Engagements. Only the BLUE side has
indirect fire capabilities in SPARTAN. The syster
replicated is the light infantry company's 60mm mortar. In
SPARTAN, the two mortars are located<of£ screén at the
position X = -500 Y = £00. Mortars are called by the BLUE
sqﬁad leader whanever he identifies two or more enemy . -
soidiers. There is an associatéd time delay betweén calls
for fire and when the mortars actually fire to account for
computation of firing data and the preparation of
ammunitien. All missions are immediate suppression, both
tubes firing three rounds (six rounds total). There are no
repeat or adjust fire missions. All rounds are high
explosive point detonating.

There are several errors built into indirect fire
missions. First, the grid coordinates that the squad leader
calls to the tubes can be off as much as 100 meters in
either the vertical or horizontal direction, this replicates

map reading error. There is also the ballistic error of the

152

rounds. In both cases, a trianqgle distributibn is used to
simulate normal distributions.

Indirect fire engagements are represented By an
irregular burst of six explosions representin¢ the rounds'
launch. A redvline‘is then drawn from the tubes to the
referenced tafget coordinate. 8ix red circles and
accompanying explosions then denote rounds impacting. Next,
a black rectangle is drawn over the red circles. This
rectangle represents the area in which all personnel,
friendly or enemy, are assessed as being hit. Outside this
rectangle (to ? distance of ?OOm)} all personnel are
assessed as suppressed. Thiu methc3 of casualty assessment
is known as the cookie cutter method.

Impact Assessment. If a target is azsessed as being
hit as result of either a DIRECT or INDIRECT FIRE
engagement, an IMPACT ASSESSMENT is called. 1If the tarqét
previocusly was uninjured, it has a 30% chance of being
killed and a 70% chance of being wounded. 1I: the target was
already wounded,rhis chances of being killed increase to
50%. If the target is wounded, his attributes are updated
to reflect that he is now prone and in a nonmoving status.
If the target is killed, his icon changes to grey, his wound
status, position status and move status attvibutes are
updated, and 2ll his future events are removed from the
event list. If the target was a squad leader, a succession

of command to one of the designated team leaders takes

place.

153

Reaction to Fire. Targets react to fire based on their

current posture and move status (Table 13). If the reacting

soldier is a squad leader, all sgquad members adopt his new

posture.

Table 13 React to Fire

CURRENT STATUS REACTION

Standing$x Crouching (Pr=.5%)
Prone (Pr=.2)

Prone/nonmoving (Pr=.1l)

. No change . (Pr=,2)
Crouching Prone (Pr=.4)
Prone/nonmoving (Pr=s.l)

: No change {Pr=.5)

Prone _ Prone (Pr=.5)

Prone/nonmoving (Pr=.3)

NOTE: Unless move status is specifically indicated in
the reaction, it does not change from the current

status.

N Qbstacles. The default data files contain no

é;v obstacles, but users can input one cbstacle in the

v preprocessor. 1If an obstacle is emplaced, than a tlag is
tripped and the squad leader checks along his current
azimuth to see ‘f he can identify the obsta 1§ (at which
point a message reflecting obstacle 1dont1£1‘ution will

»?“ appear in the upper left corner). 1If the obstacle does not
: . intersect the squad leader's azimuth, then SPARTAN assumes
the entire squad can bypass it. rn

No direction change is caused by obstacle
identification, instead the squad will continue to move

forward until the first squad member hits the okstacle.

154

When the squad hits the obstacle, breaching commences.
Breaching takes 100 time units, during which the squad
assumes a prone nonmoving status (although the squad might
chanﬁe formatidn if it comes under fire while breaching).

At the end of 100 time units, the squad posture changes back
to standing and moving.

Formation and Direction Changes. 1If the squad leader
selects a tirqet that is more than 25 degrees off the
current azimuth, he wili direct a formation change to bring
his squad on line and a direction change towards the new
target in order to focus more fire power. If the target is
less than 25 degrees off tﬁe current azimuth, only a
formation change ii directed. 1In either cise, squad
members' position attributes are updated, but the current
scheduled moves are not altered. Tﬁi# will be most
noticeable when it appears that observers are shooting at
empty spaces or that empty spaces are engaging targets. For
this reason, a REFRESH screen is scheduled during breaching
operations. Otherwise, the graphic's diacrepancies will
self correct during the next MOVE cycle.

command and Controel. SPARTAN has no specific command
and control module, instead command and control is built
into almost every aspect of the simulation. The squad
leader dictates movement speed (this maintains formation
integrity). The squad leader also dictates the posture of
all aquad members (although in the absence of guidance the;
will react individually). The BLUE squad leader also i- the

153

only one who can call for indirect fire. Both sgquad leaders

adjust formations and direction of movement to attack the
enemy fhey feel is mbst dangerous. The squad leader is also
the only soldier who can identify obstacles. Finally, if
the squad leader is killed, there is a succession of command
based on subordinate leaders. ‘

Qutput and Help. SPARTAN provides extensive Help and
Output. Help menus are accessible through the main menu.and
provide more specific information on algorithms and

equations used in modeling combat processes. Output is

available both during program execution and at program

completion. See Section'IV foi more specifics;

T$xs section provides information about the default
SPARTAN scenario. |

Bituation. The SPARTAN land combat model replicates
twp squad gized forces fighting in terrain that is not
controlled by either side.‘ Both forces hiverrouthy
Qquivalent types of small arms, although BLUE is a bigger
force. BLUE also has indirect fire. This situation is like
many low intensity conflict scenarios.

Terrain. The terrain in the example is mostly rolling
grassy farmland. Elevation varies between 60 and 110
meters. There is one stream that is fordable to dismounted
soldiers and several wooded areas which slow movement and

hinder observation. There are two all weather capable roads

156

and numerous farh trails in the area. Wire obstacles from

previous operations are in the area.

Heather. Weather is not expected to hinder operations
for either side. A clear sunny day is expected. Neither
side has obscurants.

Mission. BLUE conducts a combat patrol to identify and
destroy aay RED forces in the area of their patrol. RED
forces seek to deny BLUE forces access to tlie area. BLUE
has superior firepower, but RED is willing to accept
proportionally higher casualties. BLUE is successful if
they destroy two thirds or more of RED, forcing RED to
withdraw. RED is successful if they kill one third or more
of BLUE, forcing them to withdraw. Neither side has been in
the area before and there are no prepared positions.

u ent . Equiﬁment for the default scenario is tkLe
same as identified in Section 1I.
Data files. Ten data files are required for this

sceriario. For a complete list, see Secticn 1IV.

Section III. STARTUP

This section contains information about STARTUP.exe, a
preprocessor that can be used to load, view, or edit default
data files. Basically, STARTUP.exe reads the .dat extension
data files into arrays, allows the user to edit them, and
creates .exp files for SPARTAN to read.

STARTUP is menu driven and like SPARTAN has extenaive
help files. The four data files that STARTUP allows the

157

user to edit are the terrain data file, fhe soldier

attribute list,‘the initial event list, and the probgbility
of hit tables.

Terrain Editor. Unlike the first ve¥sion of SPARTAN,
the terrain attribute list is hard wired. Because the data
must match the graphical representation on the screen‘for
the screen to be meaningful, the data files are closed to
users, .The terrain editor, howeVer, is designed to assist
first time land combat modelers. It offers the options
below: | '

l) View map--allows the user to vieﬁ‘the map.

2) Add obstacles--allows the user to add one wire
obstacle. Creates OBS file for SPARTAN.

3) View terrain dat--allows the user to view terrain
cell data. ,

4) View elevation data--allows the user to see how
terrain cell elevation data dictates contour
lines. : _

5) Line of Sight--allows the user to pick observer
location and checks the line of sight for user
input ranges and fields of view. ==~

The terrain data file is call MAPl.dat and contains 3

attributes for each of 2500 terrain cells. Each cell has an
elevation attribute between 60 and 110, a mobility factor
between .1 and 1 (1 being unimpeded mobility), and a
visibility factor between .5 and 1 (1 is unimpeded
visibility). |

Soldjer Attribute Editor. The Soldier Attribute Editor

allows the user to accomplish tasks listed below:

158

1)

2)
3)

4)
5)

View BLUE soldier attributes--aliows the user to
view selected BLUE soldier attributes.

View RED soldier attributes.

Addvsoldiers--allows the user to add soldiers (for
a maximum of 12 soldiers).

Delete soldiers.

Edit soldier attributes--alldws‘the user to edit a

. selected soldier's attributes.

Pick formation and location--allows to pick the
BLUE squad lender's location and one of four BLUE
formations. Automatically updates position data
for the remainder of the squad.

Each soldier has 15 attributes. These are listed in Table

14.
Table 14 Soldier Attributes
ATTRIBUTE DESCRIPTION RANGE OF VALUES
1 side 1=BLUE -1=RED
2 duty position 1=SL, 2=ASL, 3=GRNDR, 4=AR,
, 5zRifleman
3 horizontal coord 0 - 1000
4 vertical coord 0 - 1000
5 # grenades 0 - 32
6 time 1lr3t fired :
7 postur DHefore direct fire engagemen
8 directi~r. of travel 0 - 6.28 radians
9 move status 1l = moving 0 = stationary
10 posture 1=standing, 2=crouching
3=prone
11 weapon 1=M16A2, 2=AK74, 3=8SAW
4=M203, 5,6=user defined
12 rounds/magazine M16=30, AK74=40, SAW=200
13 {§ magazines M16=26, AK74=6, SAW=3
14 target selected 0 - 12
15 wound status O=dead, l=wounded, 2=alive
It is not necessary to start all soldiers cn the game
map, but it is recommended that at least the squad leader
start on the screen. SPARTAN will carry soldiers and do

159

0k v SRR A oo Tl .. o e B R 1 et

their computations as if soldiers were on the board, but

will not draw them until they are completely on the screen.

Probability of Hit Editor. The Probability of Hit

Editor allbws the user to either review current Phit tables

or to create his own. SPARTAN uses the Polya-Williams

. approximation to compute the single round hit probability of

a hit on a rectangular target. A negative binomial fuaction
is then used to compute Phit for bursts of fire.

Polya-Williams needs both vertical and horizontal aim
and ballistic error. STARTUP will show the raw error data
and the computed Phit for each weapon referenced by taréet
posture and range.

Usgrs can also input their own weapons d#ta, but they
need aim and ballistic error(vertical and horizontal) for

rangesAof 100 to 800 meters (in 100 meter increments).

_%hese errors must be measured in radians. STARTUP will then

compute and show the Phit tables. For the table to be used
however, the user must alter at least one soldiérfsrwggpggW
(attribute #11) fo réflect the new weapon type. The first
user weapon is designated as weapon typé.five and ths second
as weapon t}pe six.

Event List Editory. The Event List Editor allows the
user to accomplicsh tasks listed helowﬁv

l) View iﬁitial event list.

2) Add events to the initial event 1is:.

3) Delete events from the initial event list.

160

The event list has an event type, e#ent time, and event

actor for all scheduled events. The default event list has
a move and a search eveht for all soldiers (for a total of
24 events). The user‘mustvbe careful not to delete these as
these events initiate all other actions. In addition, the
squad leader for either side must be the first soldier for
that side to execute a move (in order to eétablish a move
time).' Otherwise, the move time is zero and the first
soldier to move will continue to march until he goes off the
screen. Users can add eveats (for a total of 45 events)

using the editor.

i A t Up a se of SPAR
This section provides instructions for running SPARTAN.

Hardware. SPARTAN actually consists of two separate

executable files and ten default data files. STARTUP.exe is
a preprocessor designed to allow users to preview data files
and to edit them as they desire to alter the scenario.
SPARTAN. exe ip the executable simulation. Both programs
were written ;n QuickBASIC and were compiled to create
executable fiﬁes that can run on any IBM (or clone) with DOS
2.1 or better and at least EGA capable monitor. The program
also needs a minimum of 512K memory. Altering SPARTAN code
requires use of QuickBASIC.

Data Files. Data files are in ASCII format. Most were
originally made using MathCad 2.5 and transferred to the

QUICKBasic directory for use by SPARTAN. There are ten data

161

files required to run the preprocessor, these are listed in

Table 15.
Table 15 Drfault Data Files

EILENAME DESCRIPTION
mapl.dat terrain data file (50x50x3)
event.dat initial event list (99x3)
soldat.dat soldier attribute list (12x15)
Ml6.dat M16 P(hit) tables (8x3)
AK74.dat AK74 P(bhit) tables (8x3)
BAW.dat SAW P(hit) tables (8x3)
cor.dat P(acquisition) tables (10x3)
INFNW.dat P(detect) tables (10x3)
INFNW.dat P(detect not in woods) tables
, (10x3)
THRESHOLD.dat target-observer detect levels
(12x12)

The#e data files are accessible only by STARTUP.exe. This
pfeptocessor reads these files, allows the user to alter
gsome of them, and then creates files with .exp extension.
The .exp extﬁnaion files are the ones read by SPARTAN.

" SPARTAN fequires 13 data files (Table 16).

Unless the user creates data during the preprocessor
run, three of these filcs are empty: pShit.exp, p6hit.exp
and obs.exp. These are the files that the user has for
creating his own weapon P{hit) files (for a maximum of two)
and an obstacle file.

Operating SPARTAN. To operate SPARTAN follow the
instruciions listed below:

STEP 1. Ensure all ten default data files (TABLE 13),
three empty filea, SPARTAN.exe and STARTUP.exe are in the

current directory.

162

Table 16 STARTAN Data Files

FILENAME DESCRIPTION
mapl.exp terrain data file (50x50x3)
event.exp initial event list (99x3)
joe.exp soldier attribute list (12x15)
plhit.exp M16 P(hit) tables (8x3)
p2hit.exp AK74 P(hit) tables (8x3)
p3hit.exp SAW P(hit) tables (8x3)
cor.dat P(acquisition) tables (10x3)
INFNW.dat : P(detect) tables (10x3)
INFNW.dat P(detect not in woods) tables
: (10x3)
THRESH.dat target-observer detect levels
(12x12)
pShit.exp user input weapon's accuracy
phit tables _
péhit.exp ‘ user input weapon's accuracy
: phit table
obs.exp obstacle data

STEP 2. At the command prompt, type "stariup“.
STARTUP.exe présentation screen will appear with a brief
message of explanation about STARTUP. You can access
STARTUP's help menu from either the main menu or by hitting
<Fl> at any time during program executicn. In STARTUP.exe,
the user can either load the default files or view and edit
them. First time users shouid use the load default files
option first to ensure all necessary data files for SPARTANV
are created before editing any files. Once the user is
finished in STARTUP, exit the program.

STEP 3. Ensure files listed in Table 16 are in the
directory with the executable files. For first time users,
running the Load Default Files option in the preprocessor
will ensure that 211 files are present. At the command
prompt, type'"spartan". The SPARTAN.exe presentation screen

will appear. When the user hits <CR>, a brief explanation

163

about SPRRTAﬁ will appear. The simulation will begin
loading data files when the user hits <CR> again.

STEP 4. SPARTAN will then query £h§ usei‘ahout
altering torminating conditions. Default terminating
‘conditions are passage of 350'time units, 3 BLUE KIA, 2 RED
KIA, or after 5000 calendar events. The user can also
change the ran&om numhér seed and tﬁrn off tha‘slav;nq of
simulation time to passa9e of :ealutime.

STEP 5. After the user alters terminating conditions
(or elects not to), the simulation bégins. The usér can
bring up the display menu at aﬁy time by hitting <F1> or can
refresh the screen by hitting <F2>. The display menu allows
the user to: '

1) View current soldier attrihufes._
2) View current potential target list.
3) View events currently on calendar.
4) View current Battle Statistics.
5) Refresh the screen.

- 6) Call the Help Menu.
7) Resume the simulation.
8) Terminate the simulation.

STEP 6. When the simulation terminates, SPARTAN
queries the user about viewing output. If the user elects
to do so, SPARTAN will show the final soldier attribute
list, potential target list, event calendar, Battle
Statistics, and Kill Card. SPARTAN also makes a history.dat

file which contains a ciu.onological listing of calendar

164

eyents, actors, and times. If this file is not renamed,

SPARTAN will overwrite it the next simulation run.

Summary

This User's Guide has provided information abouf
SPARTAN processes, the default scenario, aﬁd how to run
SPARTAN and its preprocessor. .It is not intended as a stand
alone document. Much more information about algorithins is
provided in the programs' help files and in the thesis.
Since this is a first draft, comments froh users about this
guide and the model will be gratefully accepted (and
selectively implemented) to improve SPARTAN's worth as a

teaching tool.

165

end H eprocess Code k

This appendix provides a listing of the QuickBASIC 4.5
program code for the préprocessot, STARTUP.exe. STARTUP is a

menu driven program that allows the user to view, edit, and

alter the default data files containing the soldier
‘attributes, initial event list, and obstacle list. STARTUP

also allows the usér to create his own weapon type, provided

the user has accuracy data for that weapon. Specific

‘information about these files is contained in‘chapter I1I an¢

in the user's manual (Appendix D).

STARTUP is a single module, with subprograms for each
program function. All subprograms are listed in their
entirety, except for the help files. These files are screens
of forﬁatted information that appears elsewhere in this
thesis.

| QuickBASIC does not have a line continuatic.. iueture, so
ampersands (&) have been used to indicate a liﬁe extca. ion.

Comment lines are indicated by a single gquotation ~ .-k (').

165

T RRARREN KRR ARRRRRARRRRR AR AR AR RIRRRRRKRRRRRARRRAA RN TRk %E
"% *

'k STARTUP.bas b
AR RRRRRERRRARXRAERARARRRERRRARRRRRURRRRARRREARRRRARCN R R R

' PURPOSE: This program is a preprocessor for the SFARTAN
'combat model. It allows the ussr to view, modify, or
'create his data files.

'7his section of the program defines the subprograms and the
'variables passed to the subprograms when the program is
‘called.

DECLARE SUB aboutspartan ()'formatted informaticn about
'SPARTAN history, development
‘and data files

DECLARE SUB explain () 'Explains how to use the menu

DECLARE SUB phit () 'Menu for Phit editor

DECLARE SUB c¢phit () 'Prints current raw accuracy data
‘and phit tables

DECLARE SUB addwpn () 'acuepts user input accuracy data

DECLARE SUB hitdefault () ‘'loads default phit data

DECLARE SUB elist () 'Event Editor Menu

DECLARE SUB help () 'Help Menu

DECLARE SUZ joehelp () 'Soldier Attribute Editor Help

DECLARE SUb mavhelp () 'Yerzain Editor Help

DPECLARE SUGB phithelp () 'Phit Editor help

DECLARE SUB evnilelp () 'Event Editor help

DECLAKE SUB mapp () ‘Terrain File Editor menu
DECLARE SUB SOLDIER () 'Soldivr Attribute Editor
DECLARE S8UB joeatrid () 'edits scldier attributes

DECLARE 8SU3 red (opi%, r) ‘'displays red soldiers' attributes
DECLARE SUE blue (opt%, b) 'displays blue soldiers' attributes
DECLARE SUB add () 'adds so0ldiers to soldier list
DECLARZ SUB delete () 'delstes soldiers

. DECLARE SUB format () '2llows user Yo pick BLUE formaticn

‘and iocatirv
DECLARE SUS mapdefault () 'loads defa!:: terrain data
DECLARE SUB TERRAINDAT () 'displays terrain data file
DECUARE SUB contour () 'displays cell c¢levaticon within
‘contour intervals
'allows user to input = wire
. 'obstacie
DECLARE SUB map (opt$%) 'Dravs map
DECLARE SUB loa () 'shows line of aight for
'user input data
DECLARE SUB opening () 'cpening screen
DECLARE SUB default () 'loads default data flles
'Frame draws the frame for
'different presentation screens
DECLARE 3UB frame (left%, right%, top%, bottom%, fore%, backs)
DECLARE SUB editevnt (opt, num} ‘edits events
DECLARE £Ub addevat () ‘adds events

DECLARE SUB wire ()

167

DECLARE BUB delevnt () | 'Allows users to delete events

‘Dynamic allows the computer to create data arrays outside the
‘64K allocated for executable programs.
'EDYNANMIC

'This section dimensions data arrays

DI¥ BHARED mapl(50, 50, 3) 'contuins terrain cell data

DM S8HARED soldat(12, 15) ‘'contains soldier attribute values
D14 EHARED event(99, 3) 'contains initial event list

DIM EHARED 1in(10, 4) ‘contains obstacle data

DIMN SHAFEZD pl(8, 4) ‘contains M16A2 Phit data

DIM BHMARCD p2(8, 4) - 'contains AK74 Phit da‘a

DIM SHARED pi(8, 4) 'contains BAW fhit data

DIi{ SHARED p4(8, 4) ‘contains user input Phit dnta
DIM EAARED p5(8, 4) : 'contains user input Phit data
CLS ‘clects the screen

COLOR 15, 9 ‘establishes blur as the screein

'background colo- and white as the
' foreground color :

CALL opening 'calls opening screen
CILL explain 'calls expainatory screen

Do ‘queries the user for the next task until he is done
COLOR 18, 9
cLS

'This next line establishes options for frame on the main r.enu
E lefty = 10: rightS = 70: top™ = 3: bottom\ = 24: forelN = 15:
T tbackh = 9
, CALL frame{leftS, rightt, tov\, bottomy, foreV, backh)
- LOCATE 4, 30: PRINT “"MASTER MENU".
- “ LOCATE 6, 25: PRINT "1) Work on terrain tilo
LOCATE 8, 25: PRINT "2) Nork on soldier file"

. LOCATE 10, 25: PRINT "3) Work cn weapon P(hit) file"
. LOCATZ 12, 25: PRINT "4) Wcrk on event tile™
.3 LOCATE 14, 25: PRINT "35) Read Nelp file"

LOCATE 16, 25: PRINT "6) Input default data™

i LOCATE 18, 23: PRINT "7) Exit program®

I LOCAT®E 20, 23: PRIXNT "lnput your selection number"™
N | 9 LOCATE 21, 25: ch$ = INPUTS())

‘. SELECT Ci.8E ch$
! Casg "1"
s CALL mapp
i CASE "2"
CALL SOLDIER
CASR ™3”
N CALL phit
" CASE "4"
RS CALL elist

CASE "5"

CALL help
CABE "é6"

CALL default
CASE 71"

EXIT DO \ .

CASE ELSE 'this is the error trap

BEEP

LOCATE 22, 25: PRINT “"Try again PYLE, choices are between
& 1 and 7

GOTO 9
END BrLECT
LOOP
CL8
END

S8UB aboutspartan
TRRRRARAN KR IR RN R R AR R R A RN RN RRARRR R RN NANNNRR AR AR AR NARARAANRARA R

‘ABOUTSPARIAN is an information screes. that o»>rovidesa the
‘history of SFARTAN, its development, and 1its data
‘requirements. The formatted text is not presented here, but

‘can be found in the user's guide.
RPN RRRRRRR R RAANRARRRRRR ARSI RARR AR R AR AARNAANARANRRAANARRAARR

CLS8

CALL frame(10, 70. 4, 8, 15, 9)
LOCATE 6, 26: PRINT " ABOUT SPARTAN"
¥RD 8UB

S8UB add

TARRRRER N IR AN AR AR R AR AN RN AR R AR R AR N AR RO R AR AAAARARAAAR R ARAN R RN
'The asubprogram add allows the user to add soldiers to the
‘soldier 1ist. The program first checks to ensure that the
‘number of soldiers you desire to input dcoes not exceed the
‘maximum allowable of 12. The program then calls to either

‘the BLUE or RED subprograms, which will display the current

‘soldier 1.st and then allow the user to input the new
'soldier's attributes.
'.t't!ﬁiiQttttﬁttt'tt.t..iit.i.'tit..tﬁiﬂti.ﬂt'.tt."...‘..’.'
'VARIABLES: r = number of red soldiers to be added

’ b = number of blue soldiers to be added

' empty = max number of allowable additions
' total = number of total desired additions
CL8

CALL frame(10, 70, 4, 15, 1%, 9)

LOCATE 8, 20: INPUT "How many RED soldiers do you wish to
¢ add?”; r

LOCATE 6, 20: INPUT "How many BLUE soldiers do you wish to
& add?"; b

169

total = r ¢+ D>
empty = 0

'This loop counts the number of allowable additions
"POR { = 1 TO 12

ir loldat(i, 1) =0 THEN empty = 1 + empty
NEXT 4

'if too many additions are desired then

IF empty < total TKEN
LOCATE 8, 20: PRINT "You ceninot add that mzny soldiers. "

LOCATE 10, 20: PRINT "You must delete at least"; umpty -
[total; soldiars first”
LOCATE 12, 20: PRINT "HIT <CR> TO GO TO MAIN MENU"™
¢S = INPUTS(1)
GOTO 10
END 1IF
IF r > 0 THEN CALL red(2, r)
IF b > O THEN CALL b1u0(2 b).
10 END SUB v

B8UB addevnt
'l*!tittttﬁtt*ﬁtt****t**tt********t**tt*itt!*ttt**tt*ﬂa*t*t*tt

'The subprogram ADDEVNT allows the user to add up to 25 events
'to the initial event list. The program £irst checks to
‘ensure that the user only intends to add less than 25 events,
‘then calls EDITEVNT which displays the current event list

'and accepts input.
’ !ﬁ*ﬁitt*ti*!i*t*ttt*tt*ﬁt*tt t*tt!tii**tttt*l**itt ARARRRANY

'VARIABLEB. r = number of desi ed added events
total = current nu iber cf events on list

cLy =
CLLL tramo(lo 75 4 0 15 9) ‘
uOCATE 5, 20: PRINT You cun only add 28 ovontl max."
LOCATE 6, 20: INPUT "How many events do you wish to add?"; r
total = r .
'loop to count current events
PR 4 =1 T0 99
IP event(i, 1) > O THEN total = total + 1)

NEXT i

'If there are already 46 events on th 1list, no more can be

'added
1P total > 46 THEN ‘
LOCATE 12, 20: PRINT "You cannot add that many events. "

LOCATE 1a, 20: PRINT "You must delete at leant™; total -
[46; " events first"”

LOCATE 16, 20: PRINT "HIT <CR> TO GO TO MAIN MENU"

8 = I!PU!S(I)

GOTO 20
END 1P

170

IF r > 0 THEN CALL editevnt(2, r)
20 END SUB

S8UB addwpn :

TRRRRARRARERRRRRRRERRRRRRE AR ERRRRR RN AR R RARRAARARRRRRR AR R AR
'The subprogram ADDWPN accepts user input accuracy data and
‘creates phit tables. 1Input data must be for ranges of 100-
'800 meters in increments of 100m. It is assumed the data is
'in milliradians. The user must also input the number of
‘rounds per burst of fire. The method of calculating the

‘thit dats is the Polya-Williams approximstion.
TRRRARARARRARRRRRRRRRRRRAAN KR ARRARNNARIRARKR AR ARARARRRAR R R AR R

'VARIABLEB' n definas the weazpon type. The first user input

weapon is #7, the second is #8.

CLS |

DIM a4(8, 5) ‘'user input accuracy data includes horizontal
' and vertical aim and burat error

DIM sx(8) ‘array of horizontal standard error

DIM sy(8) 'array of vertical standard error

DIM wid(8) '‘array of P-W X factors

DIM tall(8, 3)' matrix of P-W Y tactors
DIM pht(8, 3) 'Phit taubles
i
n=? }
OPEN "p4hit.exp™ FOR ONUTPUT AS #n
| |

31 CALlL frame(l10, 70, 2, 8, 15, 9)'presentation screen
LOCATE 3, 20: PRINT "ADDING A NEW REAPDN TO SPARTAN"
LOCATE 7, 1: PRINT "To add a new wonpon to BPARTAN, you aust

& bavo arccuracy data”
PRINT " (aim error and balliatic orror) for eight ranges. 1If
& you have less than”

PRINT "eight ranges, f£ill out the remainder with 0s."
LOCATE 11, 1: PRINT "input the required as the curser
) indicates:"

‘presentation screen for user input accuracy data

LOCATE 12, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
s ERROR (mils)"

LOCATE 13, 1: PRINT " (m) HORI1Z VERT HORIZ

& VERT"

‘This loop sccepts acciracy data for cach range

FOR { = 1 TO 8
LOCATE 14 + 4, 1, 1: PRINT USING "##8n": 100 » {;

& ad4(i, 1) » 100 * 4 'range
LOCATE 14 + 4, 11, 1: INPUT ad4(i, 2)'horisontal aim error
LOCATE 14 + 4, 21, 1: INPUT a4ii, 3)'vertical aim error
LOCATE 14 + 4, 33, 1: INPUT a4(i, 4)'horig ballistic err
LOCATE 14 + 4, 42, 1: INPUT ad(i, 5)'vert balliastic err

171

- B

i
L
'

NEXT {

'This'loop computes the total standard error in the vertical
and horizontal directions :

FOR { = 1 TO 8
sx(1) = (a4(i, 2) * a4(i 1) / 1000) “ 2+ (a4(i, 4) =
& ad(i, 1) / 1000) -
sy(i) = (ad4(i, 3) » a4(i 1) / 1000) “ 2+ (a4(di, 5) =
& " ad4(i, 1) / 1000)
'compute P-W X term
wid(i) = 1 EXP(-.32 / (3.14 * ax(i)))
‘compute P-W Y term _
tall(i, 1) = 1 - EXP(-1.62 / (3.14 * sy(1,))
tall(i, 2) = 1 - EXP(-.405 / (3.14 * s8y(i)))
tall(d, 3) = 1 - EXP(-.101 /7 (3.14 * sy(i)))
pa(i, 1) = a4(i, 1) . '

'This loop computes the phit data
FOR j = 1 TO 3
pht(i, 3J) = SQR(wid(i) * tall(i 3))
NEXT 3
NEXT §
PRINT "how many rounds in a burst?”
INPUT m!

'This loop uses the negative binumial funciion to compute the
'Phit for a burst weapon
FOR 4{ = 1 TO 8
POR j = 2 T7T0 4
pé(i, 3) = 1 - (1 - pht(d, 3 - 1)) “ m!
NEXT J
NEXT 4

CL8 e ; L

'Print the user input weapon's Phit table
LOCATE S, 1: PRINT "Here is your weapon's data."

LOCATE 10, 1: PRINT "RANGE TARGET POSTURE"
LOCATE 11, 1: PRINT " (m) S8TANDING CRONCHING
PRONE"

LOCATE 14, 1

FOR 4{ = 1 T0 8

PRINT p4(i, 1), pa(i, 2), pa(i, 3), p4(i, 4) ‘'print data
PRINT #n, pd4(i, 2), pa(i, 3), pa(d, 4) 'write data to file
NEXT 4

e$ = INPUTS(1)

CLOSE #n ‘

‘ask the user if he desires to input a second weapon type
IP n = 8 THEN GOT0O 32

INPUT "Do you want to add another weapon type ? Y/N"; ans$
IF ans8 = "Y" OR ans$ = "y" THEN

OPEN."pshit.oxp” POR OUTPUT AS $#7

ne

172

CLS

GOTO 31
END IF

32 END SUB

8UB blue (opt%, b)
CRRARRRERNR AR IREIRARRERKARKRRIRSARKRARKRRRARARREARKRRARARRRR R

'Subprogram BLUE displays the current BLUE soldier data and
'then. depending on the user option, will edit, add or delete

'a soldier.
T RRRAR AR RARRR IR KRR RARAR AR LR ARARANRAKERERRCRAARR KRR RRRRRAR

‘VARIABLES' opt% is the variable that declares what option the
subprogram executes
' b is the number of soldiers to be edited

cLs
WIDTH 80, 25

‘'This presentation screen displays the current BLUE data

CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 30: PRINT "BLUE SOLDIER DATA"

LOCATE 8, 1: PRINT "SOLDIER DUTY LOCATION MOVEMENT
STATUS POSTURE WEAPON" L
LOCATE 9, 1: PRINT " POSITION : DIRECTION"

POR i = 1 TO 12
IF soldat(i, 1) < 1 THEN GOTO 65
LOCATE 10 + i, 3: PRINT i
LOCATE 10 + i, 11: ON soldat(i, 2) GOTO 41, 42, 43, 44, 45
41 PKINT "8QD LDR" ‘duty postion
GOTO 46 '
42 PRINT “TEAM LDR"
GOTO 46
43 PRINT "GRENADIER"
GOTO 46
44 PRINT "SAW GUNNER"
GOTO 46
4% PRINT "RIPLEMAN"
46 LOCATE 10 + 4, 23: PRINT UBIXG "$##3"; soldat(i, 3);
soldat(i, 4)
LOCATE 10 + 1, 36

‘This next aljorithm converts radians into the map's 360
'degree data
dir = soldat(i, 8)

dir = 90 - dic * 180 / 3.141

IP dir < 0 THEN dir = 360 + dir

PRINT UBINI "“#i1": dirx

LOCATE 10 + 4, 44:

IF soldat(i, 9) = 0 THEN 'move status
PRINT "BTATIONARY"

173

Lo b SRR,

PR

GOTO 50

END IF

PRINT "MOVING" ‘

50 LOCATE 10 + i, 57: ON soldat(i, 10) GOTO 51, 52, 53
51 PRINT "STANDING" '‘posture

GOTO 54

$2 PRINT "CROUCHING"

GOTO 54

53 PRINT "PRONE"
54 LOCATE 10 + i, 69: ON soldat(i 11) GOTO 61, 62, 63, 64

61 IPF soldat(i, 2) = 3 THEN 'weapon type
PRINT "M203"™ ,

GOTO 65

END IF :

PRINT "M16A2"

GOTC 65

62 PRINT "AK-74"

' GOTO 65

63 PRINT "SAW"

GOTO 65

64 PRINT "OTHER"

65 NEXT 4

LOCATE 1, 25: PRINT "HIT <CR> to continue
e$ = INPUTS(I)

'optd=0 means no editing is desired
IF optS = 0 THEN GOTO 79

'opt8=z2 means to add additional soldiers
IF opt% = 2 THEN GOTO 70

‘This portion deletes BLUE soldiers
66 LOCATE 11 + 4i: INPUT "Which soldier do you want to
& delete?”, dt
IF soldat(ds, 1) < 1 THRN
PRINT "The number you input is not a blue scldier, try

& again."”
GOTO &6
END IF

‘This loop zercs out all soldier data
POR 4 =1 TO 15
soldat(ds, i) = 0
NEXT {
GOTO 79° goto the end of the subprogram

'Input soldier data

70 CLS

LOCATE 2, 20: PRINT "INPUT BLUE BOLDIER DATAY
LOCATE 6, 4: PRINT "DUTY POSITION"

LOCATE 7, 4: PRINT "X GRID COORD"

LOCATE 8, 4: PRINT "Y GRID COORD"

LOCATE 9, 4: PRINT "$GRENADES"

174

N il o e duti Za arias) ST s, -] . 2, 7 R b ™ "
v T gy A R e A S PR A A NN e Vi o o T MR B i TR e P R O Yy PG B e B cige 218 A ottt s hede
v O Sl ey PSR R N N S B R R A N S N A I ol N e N S R e R ey I S 2T Tt

LOCATE 10, 4: PRINT "TIME FIRFD"

LOCATE 11, 4: PRINT "NOT USED"

LOCATE 17, 4: PRINT "MOVEMENT DIRECTION"
LOCATE 13, 4: PRINT "MOVEMENT STATUS"
LOCATE 14, 4: PRINT “POSTURE"

LOCATE 15, 4: PRINT "WEAPON TYPE"

LOCATE 16, 4: PRINT "ROUNDS PER MAGAZINE"
LOCATE 17, 4: PRINT "NUMBER MRGAZINES"
LOCATE 18, 4: PRINT "TARGET ID"

LOCATE 19, 4: PRINT "WOUND STATUS"
FORi=1TO0r '

FOR § = 1 TO 12
IF soldat(j, 2) > 0 THEN GOTO 71
LOCATE 3, 18 + i * 10: PRINT "SOLDIER"; i
soldat(j, 1) 1
FOR k = 2 TO 15
LNCATE 3 + k, 18 + i * 10: INPUT soldat(j, k)
NEXT k :
GOTO 72
71 NEXT 3
72 NEXT i
79 END SUB

SUB contour

PR RRRARRERRRENARREARERRRR RN RARKARERREARRRRRRRRARRARRRARARRA
'Subprogram CONTOUR prints the map screen, then, in increments
'of 10 meters, highlights all terrain cells having elevations

‘contained by the contour intervals.
PRRERRRRERARRRRR ARG KRR RARARRRRRRARRRARRARRRRRARERKRRR AR A RS

‘copies the map on the nondisplayed screen to the visible
‘screen
PCCPY 1, O

‘this loop starts at the lowest elevation level in SPARTAN and
'highlights the center of each tervain cell having a elevation
'batween the two levels
FOR k = 0 TO 40 STEP 10
LOCATE 1. 1: PRINT "Elevation between"; 60 + k; "and"™;
& 69 + k; "meters™
MOR 1 = 1 TO 50 .
FOR 3 = 1 TO 50
' if the elevation of tha coll is witin the current
' interval, highlight the cente~r of the cell
IF mapl(i, j, 3) > 59 + k AND mapl(i, 3, 3) < 70 + k THEN
END IF
NEXT 3
NEXT 4§
LOCATE 2, 1l: PRINT "HIT <CR> to continue”

175

aom

e$ = INPUTS(1)

'copy the undisplayed map to the current screen to do the next
'contour interval

" .PCOPY 1, ¢

NEXT k

END SUB

SUB cphit
'**********t****ﬁ*******************ﬁ********t******t********
'The subprogram cphit displays the raw accuracy data for the

'default weapons and then displays the computed phit tables
9 dde R st e e ek e Ak e e o A ook e o e ok e ok ok ok ok ok ok e o Sk o ok ek ok ok sk o ok ek e e e ok e

CLS '
CALL frame(10,'70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT ACCURACY DATA FOR MleZ"

LOCATE 10, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
ERROR (mils)" |
LOCATE 11, 1: rnxuw " (m) HORIZ VERT HORIZ
VERT" | |
PRINT " 100 4.7 4.7 7.85 8.98 "
PRINT " 200 3.5 3.5 7.85 g8.98"
PRINT " 300 3.1 3.1 7.85 8.98"
PRINT " 400 2.9 2.9 7.85 8.98"
PRINT " 500 2.8 2.8 7.85 8.98 "
PRINT " 600 2.7 2.7 7.85 8.98"
PRINT " 700 2.6 2.6 7.85 8.98"
PRINT * 800 2.5 2.5 7.85 8.98"
LOCATE 23, 15: PRINT "HIT <CR> TO SEE P(HIT)"

- e§ = INPUTS(I)
CL8

CALL frame(lo 70, 4, 7, 15, 9)

LOCATE 5, 20: PRINT "CURRELT P(hit, DATA FOR M16A2"

LOCATE 10, 1: PRINT "RANGE : TARGET POSTURE"
LOCATEE%I,_l: PRINT " (m) STANDING CROUCHING
PRON)

LOCATE 14, 1
FOR i = 1 TO 8 .

PRINT pl(4i, 1) pl(i, 2), pl(i, 3), pl(i, 4)
NEXT 4

'ask the user if he desires to view more data

LOCAT? %3 15: PRINT "Do you want to see other P(hit) tables?
& Y/N

ans$ = INPUTS(1)

IF ans$ = "Y" OR ans$ = "y" THEN GOTO 81

GoTL 80

'Accuracy data for the AK74
81 CcL8

176

s A NG it st RIS BN T R PRI M 3 e

CALL frame(l1l0, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "CURRENT ACCURACY DATA FOR AK-74"

LOCATE 10, 1: PRINT "RANGE AIM ERROR (mils) BALLISTIC
ERROR (mils)" |
LOCATE 11, 1: PRINT " (m) HORIZ VERT HORIZ
VERT"
PRINT " 100 4.7 4.7 .8.47 8.9"
PRINT " 200 3.5 3.5 8.47 8.9"
PRINT " 300 3.1 3.1 8.47 8.9"
PRINT " 400 2.9 2.9 8.47 g.9 "
PRINT " 500 2.8 2.8 1 8.47 8.9"
PRINT " 600 2.7 2.7 8.47 8.o"
PRINT " 700 2.6 2.6 8.47 8.9"
PRINT " 800 2.6 2.6 8.47 8.9"
LOCATE 23, 15: PRINT "HIT <CR> TO SEE P(HIT)"

e$ = INPUTS(I)

CLS

CALL frame(10, 70, 4, 7 15, 9)

LOCATE 5, 20: PRINT "CURRFNT P(hit) DATA FOR BK-74"

IOCETE 10, 1: PRINT “RANGE TARGET POSTURE"
LOCATE 11, 1: PRINT " (m) STANDING CROUCHING
PRONE" ' _

LOCATE 14, 1

POR i =1T0O 8

PRINT p2(i, 1), p2(i, 2), p2(i, 3), p2(i, 4)

NEXT i '

LOC&TE 23, 15: PRIKTI "Do you want to see other P(hit) tables?
Y/N

ans$ = IRPUTS(1)

IF ans$ = "Y" OR ans$ = "y" THEN GOTC 82

GOTO 80

'Accuracy data for the SAW and RPK74

82 CLS

CALL frame(lO0, 70, 4, 7, 15, 9)

LOCATE 5, 20: PRINT "CURRENT ACCURACY DATA FOR SAW/RPK-74"

LOCATE 10, 1: PRINT “RANGE AIM ERROR (mils) BALLISTIC
ERROR (mils)"
LOCATE 11, 1l: PRINT " (m) HORIZ VERT HORIZ
VERT"
PRINT "100 6.2 6.1 1.27 l.41 "
PRINT "200 4.1 4.1 1.27 1.41"
PRINT “300 3.1 3.1 1.27 l.41"
PRINT "600 2.7 2.7 1.27 1.41"
PRINT "900 2.5 2.5 1.27 1.41"
PRINT "1000 2.5 2.5 1.27 1.41"
PRINT "1800 2.4 2.4 1.27 1.41"
PRINT "2100 2.4 2.4 1.27 1.41"
LCCATE 23, 15: PRINT "HIT <CR> TO S8EE P(EIT)"

o8 = IN2UTS(1)

CLS

CALL f:me(lo' 70, '1' 7' 15' 9)

LOCATE 5, 20: PRINT "CURRENT P(hit) DATA FOR SAW/RPK74"

177

LOCATE 10, 1l: PRINT “RANGE TARGET POSTURE"

LOCATE 11, 1: PRINT " (m) STANDING CROUCHING

& PRONE'
LOCATE 14, 1
FOR i =1T0 8
PRINT P3(1, 1), p3(i, 2)1 p3(i, 3): p3(i, 4)
NEXT i .
LOCATE 23, 15: PRINT “HIT <C‘> to return to msnu®
ef = INPUTS(I)
80 END SUB

SUB defaul"
CRRARRRAIRERRRARARERRERRKRRIRKERARRAARARRKRARRARA IR AL SRR K

'The subprogram default takes all default data files and
'creates the .exp files that are read by SPARTAN for
'simulation execution. ' It also creates empty obstacle and
'user input phit files
PARRARRKKRLRKRRRRRKRARRRIRARRKARRRKERRRKRRRKKRRRRRRRRN KRR R KR
CLS

CALL fraine(l0, 70. 4, 7, 15, 9)
LOCATE 5, 22: PRINT "STANDBY WHILE DEFAULT DATA FILES LOAD"

OPEN "mapl.dat™ FOR INPUT AS #1 ‘terrain data file
OPEN "mapl.exp" FOR OUTPUT AS #2 S
FOR i =1 T0 50
FOR j = 1 T0 50

INPUT #1, mapl(i, 3j, 1), mapl(i, Jj, 2), mapl(i, J, 3)
PRINT #2, mapl{i, j., 1), mapl(i, j., 2), mapl(i, 3. 3)
NEXT j ,

NEXT 1
CLOSE #1
CLOSE #2

OPEN "mlé6.dat"™ FOR INPUT aS #1 'M16 Phit table
OFEN "ak74.dat"™ FOR INPUT AS #2 'AK74 Phit tabl.
OPEN "saw.dat" FOR INPUT AS #3 'SAW Phit table
OPEN "PlHIT.exp™ FOR OUTPUT AS #4
OPEN "P2HIT.exp"” FOR OUTPUT AS #5
OPEN "23HIT.exp" FOR CUTPUT AS $6
FOR i =1 T0 8
FOR j = 1 TO 4

INPUT $#1, pl(4i, 3J)

INPUT #2, p2(i, 3J)

INPUT #3, p3(i, 3)

NEXT 3

NEXT 1
FOR { = 1 T0 8
FOR J = 2 TO 4

PRINT #4, pl(i, 3J)

PRINT #5, p2(i, 3J)

PRINT #6, p3{i, J)

178

Yo
AL
L.
TR
S

L

o el

NEXT j
NEXT i
CLOSE #1: CLOSE #2: CLOSE #3: CLOSE #4: CLOSE #5: CLOSE #6

OPEN "P4HIT.exp" FOR OUTPUT AS #1 'user input Phit data
OPEN "PSHIT.exp" FOR OUTPUT AS #2 'user input Phit data
CLOSE #1: CLOSE #2 . ' .
OPEN‘"obs.exp" FOR OUTPUT AS #1

CLOSE #1

OPEN "event.dat" FOR INPUT AS #1 'initial event list
OPEN "event.exp" FOR OUTPUT AS #2
FOR 1 = 1 TO 24 '
FOR 3 =1 TO 3

INPUT #1, event(i, 3)

PRINT $#2, event(i. 3j)

NEXT 3

NEXT i
CLOSE #1: CLOSE #2

OPEN "joe.dat™ FOR INPUT AS #1 'soldier attribute list
OFEN "joe.exp" FOR OUTPUT AS #2
FOR i = 1 TO 12
FOR 3 =1 TO 15
INPUT #1, soldat(i, 3)
PRINT #7, soldat(i, j)
NEXT 3
NEXT i
CLOSE #1: CLOSE #2
END SUB ’

SUB delete

Tk ke dedkde ks dk ek ko sk Tk sk g Ak de ok v e sk vk de ok sk ok sk sk sk ek e de ke ek ok
'The subprogram DELETE checks to see what type of soldier the
'user wishes to delete, then calls to either RED or BLUE to

'delete the soldier's data.
T I I I I I I T I I I I S I T S T I I

CcLS

CALL frame(l0, 70, 4, 7, 15, 9)

LOCATE S5, 20: INPUT "Do you wish to delete RED or BLUE
soldiers? /B"; ansa$

IF ans$ = "R" OR ans$ = "r" THEN

CALL red(l, 0)

GOTO 30

END IF

CALL blue(l, 0)

90 END SUB

179

WY

SUBR delevnt ‘
I i s R R R R 2 I T T T TS T P P T T T TS YT T T

'This subprogram allows the user tc delete events from the
‘initial event file. After inputing the number of events to
'be deleted, the subprogram call to edit event to delete the

'
events.
T RRRARIRRKRERERA T ARRRREKRKAE RN RRRRRR L EAARRARRRRRA KRR AR h xRk

CLS

CALL frame(10, 70, 4, 7, 15, 9)

LOCATE 5, 20: INPUT "How many events do you wish to delete";d
IFd > 0 THEN .

CALL editevnt(l, 4)

GOTO 100

END IF

100 END SUB

SUB editevnt (opt, num) '
T e A L I I I T L I T LI I IITI I IITIIIIIY

'EDITEVNT allows the user to view the current event list aund

'then edit, add or delete events
AR R RRRIRRRRRRIERARARN KRR RRRRARERREXNRRERARRRRKL AR TR

'VARIABLES: k= number of events currently displayed c¢n the
'screen. This variable is used to control the screen display
' opt = the user option for file editing

' l = delete, 2 = add, 3 = edit, 4=view

CLS
WIDTH 80, 25
CALL frame(l10, 70, 4, 7, 15, 9)

'€irst, display the current event list

LOCATE 5, 30: PPINT "CURRENT EVENT LIST"
LOCATE 8, 1l: PRINT "EVENT TYPE EVENT! ACTOR
TIME SCHEDULED"
k=0
VIEW PRINT 10 TO 24
FOR i =1 TO 99
IF event(i, 1) = 0 THEN GOTO 110
k=k+1
IF k < 1U THEN GOTO 111
LOCATE 12 + k: PRINT "Hit <CR> to continue"
e$ = INPUT3S(1)
CLS
k=0
111 LOCATE 10 + k, 3: PRINT i

‘translate the event type into verbage

LOCATE 10 + k, 11: ON event(i, 1) GOTO 112, 113, 114, 115,

180

e

116, 146
112 PRINT "Secarch"
GOTO 117
113 PRINT "Select tgt"
GOTO 117
114 PRINT "Engage tgt"
GOTO 117 ‘ ’
115 PRINT "Move"
GCTO 1.7
116 PRINT "Rea~t to fire"
GOTO 117
146 PRINT "Indirect fire"
117 LOCATE 10 + k, 30: PRINT USING "##£.83"; event(i, 2)
LOCATE 20 + k, 4€: PRINT USING "###.%#3"; event(i, 3)
11¢ NEXT i
VIEW PRINT
LOCATE 1, 25: PRINT "HIT <Ck> to coantinue”
e$ = INPUTS(1)
CLS

'‘opt is the option for editing
ON opt GOTO 120, 121, 122, 130

' delete cne or more events
120 CLS
LOCATE 3: INPUT "Which event do you want tc delete?", e%
FOR i = 1 TO 99
IF =vent(i, 1) = 0 THEN GOUTO 123
k=k +1 :

123 NEXT i

IF e% > k THEN
CLS '
PRINT "The number you input is not a scheduled event, try
& again." _
GOT0 120
END IF

'loop zeros out event con list
FOR i =1T0 3

event(e%, i) = 0
NEXT i

INPUT "Do you wish to delete any more scheduled events? Y/N";
ans$

IF ans$ = "Y" OR ans$ = "y" THEN GOTO 120

CLS

GOTO 130 'return to the previous subprogram

'add oue or more events

121 CLS
FOR i = 1 T0 22
LOCATE 8, 10: PRINT "TYPE EVENT ACTOR TIME

181

Lomigsnsndide. Sk o ARG R

& SCHEDULED"
k=0
IF event(i, 1) > 0 GOTO 124
k=k +1 v :
LOCATE 10 + k, 1: PRINT "Input"”
LOCATE 10 + k, 15: INPUT event(i, 1)
LOCATE 10 + k, 28: INPUT event(i, 2)
LOCATE 10 + k, 40: INPUT event(i, 3)
LOCATE 23, 1: INPUT "Do you wish to add any more
& events?Y/N"; ans$
IF ans$ = "Y" OR ans$ = "y" THEN GOTO 124
GOTO 130' return to the previous subprogram

124 CLS

NEXT i ‘
GOTO 130 ‘'return to the previous subprogram, no more events

can be added

'Edit an event currently on the list

122 CLS

LOCATE 11 + k: INPUT "Which event do you wish to edit?"; e
CLS

LOCATE 5, 30: PRINT "Here is the current event"™

LOCATE 8, 1: PRINT "EVENT TYPE EVENT ACTOR TIME
S8CHREDULED"

LOCATE 10, 3: PRINT e
LOCATE 10, 1ll: ON event(e, 1) GoTO 125, 126, 127 128, 129,

147

125 PRINT "Search (1)"
GOTO 13l

126 PRINT "Select tgt (2)”
GOTO 131

127 PRINT "Engage tgt (3)" .
GOTO 131

128 PRINT "Move (4)"
GOTO 131

129 PRINT "React to fire (5)"
GOTO 131

147 PRINT "Indirect fire (6)"

131 LOCATE 10, 25: PRINT USING "$33.48"; evont(e, 2)

LOCATE 10, 40: PRINT USING "###.#38"; event(e, 3)

LOCATE 11, 1: PRINT “Input”

LOCATE 11, 15: INPUT event(e, 1)

LOCATE 11, 25: INPUT event(e, 2)

LOCATE 11, 40: INPUT event(e, 3)

LOCATE 13, 1l: INPUT "Do you wish to edit any more events?

Y/N"; ans$

CLSs
IF ans$ = "Y" OR ans$ = "y" THEN GOTO 122
130 EXD SUB

182

i bopd it

i

SUB elist
-
TRRRARIRRREER AR AR KRR RRRRRAERR R AR RRARRAIN AR TR KRR A RRRZ KRR R KRR AR AR

'ELIST is the Event List Editor Menu. It downloads the
'default data file, allows the user to access different editor

‘functions and creates the .exp event file for SPARTAN.
9 e s e ok sk o ok ok ok sk ok ol ok ok Sk ok 3 o ok Sk o 3k ok ok ek ok ok o sk 3k ok ok ko ok ok ok ok ok ok ok o e ek ok ok ok ke R

CLS
COLOR 15, 9
CALL frame(l10, 70, 4, 7, 15, 9)
LOCATE 5, 20: PRINT "“STANDBY WHILE EVENT FILE IS DOWNLOADED"
OPEN "event.dat" FOR INPUT AS #1
FOR i = 1 TO 24

FOR j =1 TO 3

INPUT §1, event(i, 3j)

NEXT j
NEXT i
CLOSE #1
DO
CLS
left® = 10: right% = 70: top% = 4: bottom% = 20: fore% = 15:
back® = 9

CALL frame(left%, right%, top%, bottom%, fore%, back%)
LOCATE 6, 20: PRINT "“EVENT DATA FILE EDITOR MENU"
LOCATE 8, 20: PRINT "1) Look at scheduled events"
LOCATE 10, 20: PRINT "2) Add event"
LOCATE 12, 20: PRINT "3) Delete event"
LOCATE 14, 20: PRINT "4) Edit event list"
LOCATE 16, 20: PRINT "5) Event Editor Help"
LOCATE 18, 20: PRINT "6) Exit to Main Menu"
LOCATE 19, 20: ch$ = INPUTS(1l)
“SELECT CASE ch$
CASE "1"
CALL editevnt(4, 0)
CASE "2" ,
CALL addevnt
CASE "3"
CALL delevnt
CASE "4"
CALL editevnt(3, 0)
CASE "3"
CALL evnthelp
C’SE L 6 ”
‘Case 6 is to exit the Event Editor. Before exiting, the
altered data is loaded into the .exp file for SPARTAN

OPEN "event.exp" FOR OUTPUT AS #2
FOR { =1 TO 99
FOR j =1 T0 3
PRINT #2, event(i, j)
NEXT 3
NEXT i
CLOSE #2

183

EXIT DO
. CASE ELSE
BEEP '
LOCATE 18, 20: PRINT "Try again, GOMER"
ch$ = INPU%S(I)
END SELECT
LOOP
END SUB

8UB explain
't**t*t**ttt**********tt***t***tt*********t*tt**t**t********

'EXPLAIN presents information €for p:eprocesso: users for

'running STARTUP
'*t****t**t*t*****tt***t******t***t*tt****t****************t

CL8

COLOR 15, 1 ‘

CALL frame(10, 70, 4, 7, 15, 1)

LOCATE 5, 20: PRINT "WELCOME TO SPARTAN STARTUP PROGRAM™

LOCATE 9, 4: PRINT "The Jpurpose of this program is to review

and or modify SPARTAN's"

LOCATE 10, 4: PRINT "default data £iles." _

LOCATE 11, 4: PRINT "If you have any questions about SPARTAN

processes during the simulation”

LOCATE 12, 4: PRINT "run refer to the USER GUIDE or hit <Fl>,

- that will bring up the" _
LOCATE 13, 4: PRINT “HELP MENU."

LOC:TE 24, 1: INPUT "Hit <CR> to continue to the main menu."”

ans

END SUB

8UB format
TERRRRARRRANRRRRANRRRRRRRRARRRRRRRRANRRARARRRAR R R AR g e de ke sk

‘FORMAT allows the user to pick a DLUE formation and squad
'leader location. It then updates all the rest of the squad

‘member's locations.
IR RRRRRRRRARERRRAR I RRRARRRRANRANRRRRRRRARRARRRRRARRRRRRARRRY

'VARIABLES: array is the data array that contains the
'‘information neccessary to draw the icons in the formation
'‘diagrams .

SCREEN 9
WIDTH 80, 43
DIM array(0 TO 104) AS INTEGER

‘Establish four view ports on the screen, and diagram the
‘formations

184

| S

VIEW (39, 0)-(299, 125), 9, ©
LOCATE 1, 10: PRINT "DIRECTION OF MOVEMENT"; CHR$(24)

'draw stick man

LINE (133, 55)-(135, 57), 15, BF
LINE (134, 55)-(134, 61), 15
LINE (134, 62)-(137, €8), 15
LINE (134, 62)-(131, 68), 15
LINE (135, 59)-(138, 62), 15
LINE (133, 59)-(130, 62), 15
'put man into data array

GET (130, 55)-(138, 68), array

' draw first formation

PUT (180, 70), array, PSET

PUT (230, 70), array, PSET

PUT (80, 70), array, PSET

PUT (30, 70), array, PSET

PUT (65, 30), array, PSET

PUT (175, 30), array, PSET

PUT (150, 90), array, PSET

PUT (110, 90), array, PSET

LOCATE 16, 10: PRINT "1. SQUAD LINE/TEAM WEDGE"
VIEW

Y

T LI I R

i

' 2nd formation

VIEW (341, 0)-(600, 125), 9, O

LOCATE 1, 47: PRINT "DIRECTION OF MOVEMENT'; CHRS$(26)
PUT (144, 60), array, PSET

PUT (240, 60), array, PSET

PUT (90, 60), array, PSET

PUT (210, 40), array, PSET

PUT (210, 80), array, PSET

PUT (180, 100), array, PSET

PUT (60, 40), array, PSET

PUT (60, 80), array, PSET

PUT (30, 20), array, PSET

LOCATE 16, 47: PRINT "2. SQUAD COLUMN/TEAM WEDGE"

VIEW
' 3rd formation

VIEW (39, 175)~(299, 300), 9, O

LOCATE 23, 10: PRINT "DIRECTION OF MOVEMENT"; CHRS$(26)
PUT (140, 60), array, PSET

PUT (240, 60), array, PSET

PUT (90, 60), array, PSET

PUT (210, 40), array, PSET

PUT (210, 80), array, PSET

PUT (180, 60), array, PSET

PUT (60, 40), array, PSET

185

PUT (66, 80), array, PSET
PUT (30, 60), array, PSET

'LOCATE 38, 10: PRINT "3, SQUAD COLUMN/TEAM WEDGE"

VIEW
' 4th tormation

VIEW (341, 175)-(600, 300), 9, O
LOCATE 23, 47: PRINT "DIRECTION OF MOVEMENT"; CHR$(26)

PUT (250, 60), array, PSET

-PUT (225, 60), array, PSET

PUT (200, 60), array, PSET
PUT (170, 60), array, PSET
PUT (140, 60), array, PSET
PUT (110, 60), array, PSET

. PUT (80, 60), array, PSET

PUT (50, 60), array, PSET

PUT (20, 60), array, PSET

LOCATE 38, 47 PRINT "4. SQUAD FILE"
VIEW

' query the user for hié formation and location choices

140 LOCATE 40, 1: INPUT "Input formation number <e.g. 3>", n%
LOCATE 41, 1: INPUT "Input dizection of movement in degrees

& <e.g. 45>", dir

LOCATE 42, 1: INPUT "Input squad leader x and y grid
& coordinates <e.g.200,200>", x, ¥
2l = x - 8: yl =y -10

'conﬁert the user input direction from degrees to radians
dir = (90 - dir) * 3.141 / 180 |
'update soldier's location attributes based on user choice

ON n% GOTO 141, 142, 143, l44
PRINT "TRY AGAIN"
GOTO 140

' lat formation
141 CLS
soldat(l, 3) = x: soldat(l, 4) = y

soldat(5, 3) = x + 36 * CO8(2.55 + dir): soldat(5, 4) = y + 36
& * SIN(2.55 + dir)
soldat(3, 3) = x + 30 * CO8(1.57 + dir): soldat(3, 4) =y + 30
& * BIN(1.57 + dir)
soldat(2, 3) = x + 56 * COS(1.39 + dir): soldat(2, 4) = y + 56

& * BIN(1.39 + dir)
soldat(4, 3) = x + 65.7 * CO8(1.72 + dir): soldat(4, 4) = y +

& 65.7 * SIN(1l.72 + dir)
coldat(S 3) = x + 36 * CO8(-2.55 + dir): soldat(9, 4) = y +

& 36 * SIN(2.55 + dir)

186

soldat(7, 3) = x + 30 * COS(-1.57 + dir): soldat(7, 4) = y +
& 30 * SIN(-1.57 + dir)

soldat(6, 3) = x + 56 * COS(-1.39 + dir): soldat(6, 4) = y +
& 56 * SIN(-1.39 + dir)

soldat(8, 3) = x + 65.7 * COS(-1.72 + dir): soldat(a 4) = y
& + 65.7 * SIN(-1.72 + dir)

GOTO 145

' 2nd formation

142 CLS

x: soldat(l, 4) =

soldat(l, 3)
x + 75 * Cos(dir): soldat(2, 4) =y + 75 *

soldat(2, 3)
& SIN(dir)
soldat(3, 3) = x + 56 * COS(~-.464 + dir): soldat(3, 4) =
& 56 * SIN(-.464 + dir)
soldat(4, 3) = x + 56 * COS(.464 + dir): soldat(4, 4) = y + 56
& * BIN(.464 + dir) |
soldat(5, 3) = x + 56 * COS(-1.11 + dir): soldat(5, 4) = y +
1
Yy

& 56 * SIN(-1.11 + dir)

soldat(6, 3) = x + 25 * C0S5(3.141 + dir): soldat(6, 4) =
& 25 * SIN(3.141 + dir)

soldat(7, 3) = x + 56 % COS(3.6 + dir): soldat(7, 4) =y + 56
& * SIN(3.6 + dir)

soldat(8, 3) = x + 56 * COS(-3.6 + dir): soldat(8, 4) = y + 56
& % SIN(-3.6 + dir)
soldat(9, 3) = x + 90 * Cc0S(2.55 + dir)' soldat(9, 4) =y + 90
& * SIN(2.55 + dir) .

GOTO 145

+

! 3rd choice
143 CLS
soldat(l, 3)
soldat(2, 3)
& S8IN(dir)
soldat(3, 3) = x + 70 * COS(-.464 + dir): soldat(3, 4) = y +
& 70 % SIN(-; + dir)

soldat(4, 3) = x + 70 * COS(.464 + dir): soldat(4, 4) =y + 70
& * BIN(.464 + dir)

soldat(5, 3) = x + 40 * COS(dir): soldat(5, 4) = y + 40 *

& SIN(dir)

socldat(6, 3) = x + 30 * COS(3.141 + dir): soldat(6, 4) = +
& 30 * SIN(3.141 + dir)

soldat(7, 3) = x + 56 * C0S(3.6 + dir): soldat(7, 4) =y + 56
& * SIN(3.6 + dir)

soldat(8, 3) = x + 56 * COS(-3.6 + dir): soldat(8, 4) = y + 56
& * SIN(-3.6 + dir)

x: soldat(l, 4) = y
x + 95 * COS(dir): soldat(2, 4) = y + 95 %

soldat(Q 3) =2 + 75 * COS(3.141 + dir): soldat(9, 4) = +
& 75 * SIN(3.141 + dir)

GOTO 145

' 4th formation

187

A FERR e e TR A s R et o

144 CLS
soldat(1, 3)
soldat(2, 3)
& SIN(dir)
soldat(3, 3)
& SIN(dir)
soldat(4, 3)
& SIN(dir) , :
soldat(s, 3) x + 25 % cos(dir): soldat(s,.4)
& S8IN(dir) '
soldat(6, 3) x + 25 * COS(3. 141 + dir): soldat(6, 4) =
& 25 * SIN{(3.141 + dir)

x.Asoldat(l. 4) = y
X + 100 * CcO8(dir): soldat(z, 4) = y + 100 *

X+ 75 % cos(di:): soldat(3, 4) y + 75 *

x + 50 * COS(dir): soldat(4, 4) =y + 50 *

:y+25*

soldat(7, 3) = x + 50 * COS(3.141 + dir): soldat(7, 4) = y +
& 50 *» SIN(3.141‘+ dir) '
soldat(8, 3) = x + 75 * CO8(3.141 + dir): soldat(g, 4) = y +
& 75 * SIN(3.141 + dir) '
soldat(9, 3) = x + 100 * CO08(3.141 + dir): soldat(9, 4) = y ¢+

& 100 * SIN(3.141 + dir)

‘update all soldier's location to reflect user input direction
145 FOR 1 = 1 TO 9

soldat(i, 8) = dir
NEXT {1
END SUB

SUB frame (lefth, rights, top%, bottomd, fored, backh)
P RERARERERERERKERRARRRERERERERRRRERRRRANRRERKRRRRRRRRXRERRR LR

. "FRAME draws the frames seen on presentaticn s2ieens
B e e e e S Ll

COLOR fore®, backh

LOCATE toph, left%: PRINT CBRS(ZOI)

. LOCATE top%, right%: PRINT CHR$(187)
LOCATE bottom%, leftd: PRINT CHR$(200)
LOCATE bottom%, right%: PRINT CHRS$(188)

FOR vertS = topd + 1 TO bottom$ - 1 ,
LOCATE vert%, left%: PRINT CHRS(186) -
LOCATE verth, rightS: PRINT CHRS(186)

NEXT vert$

horiz® = right% - lefts ~ 1

hline$ = STRINGS(horiz%, 205)

LOCATE top%, leftVN + 1l: PRINT hline$
LOCATE bottom%, leftS + 1: PRINT hline$
END SUB .

188

el

PRI _ © - tpaasp s s
e ¥)

SUB help
AR AR R AR I RERL AT R AR IR LA AR RRARRARRERAEARRRRRARE KRR I AR

'Subprogram HELP is the main menu for the help screens. It
'queries the user for the specific help function the user

'desires, then accesses that file
AR RRRR R KR RRRARRKAARRRAARRRERR AR TARARRRRRRRRAARRRARARRRRRRARRRRARE

Do

CLS '
left® = 10: right% = 70: top% = 4: bottom®% = 23: fore% = 15:
backs = 1

WIDTH 80, 25
CALL frame(left%, right%, top%, bottom%, fore%, back®)
LOCATE 6, 30: PRINT " HELP MENU"
LOCATE 8, 20: PRINT "1) Help with terrain editor"
LOCATE 10, 20: PRINT "2) Help with soldier attribute editor"
LOCATE 12, 20: PRINT "3) Help with Pr(hit) editor"
LOCATE 14, 20: PRINT "4) Help with event editor"
LOCATE 16, 20: PRINT "5) About SPARTAN"
LOCATE 18, 20: PRINT "6) Exit to main menu"
4 LOCATE 19, 20: ch$ = INPUTS(1l)
SELECT CASE ch$
CASE "1"

CALL maphelp
CASE 2"

CALL joehelp .
CASE "3"

CALL phithelp -
CASE "4"

CALL evnthelp
CASE “5"
CALL aboutspartan
CASE "é6"
EXIT DO
CASE ELSE

BEEP

LOCATE 20, 20: PRINT "Try again, GOMER"

GOTO 4
END SELECT
LOOP
END SUB

SUB joeatrib
TR RAR A KRR RE AR I ERTERRAARRERRRRRARRRRRRERRRARRAANRARRRRRRRR Y

'JOEATRIB allows the user to edit a soldier's current

attribute ‘values.
PR RRRR AR AR RE AR KRR A RRRRRRRANRRRARRRARARRRRKRRARARRRRRRRERAK

150 CLS
CALL frame(l0, 70, 1, 7, 15, 9)
LOCATE 2, 15: INPUT "Which side do you want to edit? R/B",

189

ana$

IF ans$ = "B" OR ans$ = "b" THEN

strng$ = “BLUE"

GOTO 151 :

END IPF

strang$ = "RED"

151 LOCATE 4, 25: PRINT strng$; " SOLDIER ATTRIBUTES"

'‘queries the user to ensure edited eoldeir is a soldier

152 LOCATE 6, 21: INPUT "Which soldier do you wish to edit?";

ans
IF ans > 12 THEN

LOCATE 23, 4: PRINT "TRY another aoldier,aoldier"
GOTO 152 L

END IF

'display current values of soldier's attributes

CL3 '
LOCATE 2, 20: PRINT “OLD ATTRIBUTES"

LOCATE 2, 35: PRINT "NEW ATTRIBUTES"
LOCATE 6, 4: PRINT "SOLDIER #"
LOCATE 7, 4: PRINT "SIDE"

LOCATE 8, 4: PRINT "pUTY POSITION"
LOCATE 9, 4: PRINT "X GRID COORD"
LOCATE 10, 4: PRINT "Y GRID COORD"
LOCATE 11, 4: PRINT "#GRENADES"

LOCATE 12, 4: PRINT "TIME FIRED"

LOCATE 13, 4: PRINT "NOT USED"

LOCATE 14, 4: PRINT "MOVEMENT DIRECTION"
LOCATE 15, 4: PRINT "MOVEMENT STATUS"
LOCATE 16, 4: PRINT “POSTURE"

LOCATE 17, 4: PRINT "WEAPON TYPE"
LOCATE 18, 4: PRINT "ROUNNS PER MAGAZINE"
"LOCATE 19, 4: PRINT "NUMBER MAGAZINES"
LCCATE 20, 4: PRINT “TARGET ID"

LOCATE 21, 4: PRINT “WOUND STATUS"
LOCATE 6, 15: PRINT ans

FOR 4 = 1 T0 15
LCCATE 6 + i, 25: PRINT soldat(ans, i)

'input new attribute values
LOCATE 6 + i, 40: INPUT ; soldat(ans, i)
NEXT 4

LOCATE 23, 1
INPUT "Do you wish to alter anymore soldiers? Y/N"; ans$

IF ans$ = "Y" OR ans$ = "y" GOTO 150
END SUB

8UB los

190

¥ 3¢ de ok 2 v e ok v e e o ok o ok 3k ok ok ok ok sk ok 3k o 9 ok a3k ok ok ok o e Y ok ok e ok 3k ok ok o ok ok e ok ok ok ok o dk ok ok ok 3k ok ok Sk ok

'LOS draws the line of sight cone for user input location,

‘range, and stop and start angles.
TRRARRRAA KKK RRAREK AN RN KR ARk R KRR RRR TR TR RI KRRk Rk ok sk ok hok i

'copy the map from the undisplayed screen to the visible one
160 PCOPY 1, ©
'query the user for input

LOCATE 1, 1: INPUT "Input observer s location. (Input X,Y)

& (example <900,900>)"; x,

LOCATE 2, 1: INPUT "Line of sight cone(start degree,end

& degree) (exapmle <45,275>)"; start, fin

LOCATE 3, 1: INPUT "Line of sight radius (between 0 and 1000
& meters)"; r

'convert start and finish angles from degrees to radians

IF start >= 0 AND start <= 90 THEN
start = (90 - start) * 3,141 / 180

ELSE
start = (360 - (start - 90)) * 3.141 / 180

END IF

IF fin >= 0 AND fin <= S0 THEN
£in = (90 - fin) * 3.141 / 180
ELSE
£in = (360 - (fin - 90)) * 3.141 / 180
END IF

PCOPY 1, O ‘refresh the screen

- 'draw the line of sight cone
CIRCLE (x, y), £, 0, -fin, ~-start, 340 / 650

'determine observer elevation

hexx = INT(x / 20 + 1): hexy = INT(y / 20 + 1)
zl = mapl(hexx, hexy, 3) + 1.8

'if observer is in the woods, assign the woods flag wl=l
IF mapl(hexx, hexy, 2) < 1 THEN
wl=1
ELSE
wl =20
END IF

w = wl

'loop to check los every .05 radians around line of sight cone
FPOR k = £in TO start STEP .05

191

'determine the target location (x2,y2)
x2 = x + r * COS(k)
" IF x2 < 1 THEN x2 = 1

IF x2 >= 1000 THEN x2 = 999
Y2 = y + r * SIN(k)

IF y2 < 1 THEN y2 =1

IF y2 >= 1000 THEN y2 = 999

3 ‘determine target elevation
| 22 = .9 + mapl(INT(x2 / 20 + 1), INT(Y2 /] 20 + 1), 3)

'determine slope of observer-target line
slope = (22 - z1) / ¢

'‘loop every meter on the redius from obsefver to target

FOR i =1T0r

'if line is off the map go to next angle

xn = x + 1 * COS(k): yn=y + i * SIN(k)

IF 0 >= xn OR xn >= 1000 THEN COTO 166

IF 9 >= yn OR yn >= 1000 THEN GOTO 166
'if the eleveation sheck is in the same terrain cell, go to
'‘the next meter along *he radius

IF INT(xn / 20 + 1) = hexx AND INT(yn / 20 + 1) = hexy
& THEN GOTO 165

‘else compute the new elevation of the interveninq terrain
'eall
hexx
IP w

INT(xn / 20 + 1): hexy = INT(yn / 20 + 1)
1 AND mapl(hexx, hexy, 2) = 1 THEN w = 0

'if the cell is iin the woods and the observer is out of the
‘woods factor in the elevation of the trees

IF w = 0 AND mapl(hexx, hexy, 2) < 1 THEN
znow = mapl(hexx, hexy, 3) + 10 / mapl(hexx, hexy, 2)
ELSE
znow = mapl(hexx, hexy, 3) + .9
END IF
'if the new elevation is less than the observer-target line

'goto the next terrain cell
IF znow <= 2zl + i * slope THEN GOTO 165

'if the terrain in the current cell blocks los, start drawing
'a line to indicate los is blocked

x0ld = xn: yold = yn: ¢t =41 + 1

slopenow = (znow - zl1l) / i
'lcop checks to see if some terrain can be seen alonq the
'‘cbserver-target line, event though the line is blocked

FOR j =t TOr

xn = x + J *Co8(k): yn=zy + § * BIN(k)
IFP O >z xn OR xn >= 1000 THEN GOTO 165

192

1F 9 >= yn OR yn >= 1000 THEN GOTO 166

I INT(xn / 20 + 1) = hexx AND INT(yn / 20 + 1) =
& hexy THEN GOTO 164

hexx = INT(xn / 20 + 1): hexy = INT(yn / 20 + 1)
‘continue to check if the observer-target line is in the
'wooded area

IF w 1 AND mapl(hexx, hexy, 2) = 1 THZN w = 0

IP w 0 AND :inapl(hexx, hexy, 2) < 1 THEN
znext = {mapl(hexx, hexy, 3) + 10 / (mapl(hexzx, hexy, 2)))

ELSE

znext = (mapl(hexx, hexy, 3) + .9)

END IF
'if the los is blocked draw a line

IF znext < znow THEN GOTO 162

'if the elevation is the new cell is higher than the previous
'terraxn (i.e. the obsever can see it)go to the next terrain
cell to see if the observer can see it
IF slopenow > (znext - zl) / 3 THEN GOTC 162
slopenow = (znext - zl) / 3
znow = znext
x0id = xn: yold = yn
GOTC 164 |
'if the terrain cannot be seen, draw a line
162 LINE (xold, yold)-(xn, yu), 0
xold = xn: yold = yn
164 NEXT 3
GOTO 166
165 NEXT i
W= wl
166 NEXT k '
INPUT "Do you want to continue? Y/N"; ans$
IF ans$ = "Y" OR ans$ = "y" THEN GOTO 160
END SU3

SUB map (opt%)
CRAERRRKRRKRERRKARRKRAARIRRKRERRERIRIRRARERTR R KR IR " AR EERER LR
'MAP draws the screea map. It also calls the map editor

'subprograms referenced by opt%
¥ de ded de A 2 ek ok ok Jeok o o ok Sk ok ok ok ok o 9k ok o S o ok ok s ok ok ok 9k 3 ok ok ok 3 o ek o ok ok e ook o ok e

SHARED 1 'l is the flag that defines whether an obstacle has
'been emplaced by the user

CLS

SCREEN 9, , 0, O

WIDTH 80, 43

WINDOW (0, 0)-(1000, 1000)

‘paint the screen the white background color
PAINT (500, 500), 15

' draw the wooded areas

LINE (4C, 0)~(0, 389), 2, BF

LIKE (40, 0)-(160, 360), 2, BF

LINE (160, 0)-(2C0, 320), 2,
LINE (200, ©)-(220, 3920), 2,
LINE (220, 0)-(280, 280), 2,
LINE (280, 0)-(283, 280), 9,
'draw the stream

LINE (220, 280)-(283, 283), 9, BF
LINE (220, 280)-(223, 300), 9, BF
LINE (200. 300)-(220, 303), 9, BF
LINE (0, 380)-(40, 383), 9, BFf
LINE (40, 360)-(160, 365), 9, BF
LINE (40, 383)-(43, 360), 9, BF
LINE (160, 360)-(163, 320), 9, BF
LINE (160, 320)-%200, 323), 9, BF

LINE (200, 323)-

‘draw the angledsred roads
POR 4 = 1 TO 25 |

203, 300), 9, BF

LIRE ((4 - 1) * 20, 500 - 2 * (4 - 1))-(i * 290, 500 -

(i - 1))0 4, BF |
KEXT 4 !
FOR i = 25 TO 50

LINE ((4 - 1) * 20, 449 + 3 * (i - 25))-(1i * 20, 449

* (i - 25))0 4, B’
NEXT i

LINE (500, 0)- (SQS. 1000), 0, B

FOR i = 0 TO 1000 BTEP 40

LINE (501, i)- (504. i+ 20), 4, BP

NEXT 4
LIKE (480, 455)- (430, 465), ©

LINE (160, 840)-(240, 880), 2, BF

FOR 4 = 1 TO 50

LINE (480 - (4 - 1) * 15, 465 + (1 - 1) * 20)-(480

465 + 41 * 20), O

NEXT 4

LINE (330, 665)-(250, 665), 0
FOR { = 1 TO 25

LINE (250 - (i - 1) ®* 20, 665 + {1 - 1) * 8)-(250

665 + i * 8), 0
NEXT i
FOR i = 1 T0 2

25
LINE (750 + (L -1) 10, 0 + (4 - 1) % 15)-(750 + 4

+4*18), 0
 NEXT 4
FPOR 1 = 1 TO

25
LINE (500 + (i -1) * 18, 750 - (i - 1) * 9)-(500

750 -1 *9), 0
NEXT i

'dravw the contour lines

+

CIRCLE (150, 880), S0, 6, , , .45
CIRCLE (150, 900), 200, 6, , , .5

194

i * 15,

i* 20,

a * 18,

CIRCLE (150, 900), 600, 6, , ,
CIRCLE (1000, 800), 1100, 6, , , .3
LINE (1000, 840) (soo0, 720), 2, BF
CIRCLE (1000, 800), 70, 6, , , .2

CIRCLE (1000, 800), 120, 6, , ,» .25
CIRCLE (50, 50), 100, 6, , , .5
CIRCLE (50, 50), 200, 6, , , .3 .

* if an obstacle is present draw it, else skip this portion

IFP 1 = 0 THEN GOTO 170

' loop to draw an obstacle

FOR1i =1T01
LINE (lin(di, 1), lin(i, 2))-(1
m! = (lin(i, 4) - lin(i, 2)) /
b= lin(i, 2) - m * lin(i, 1)

ia(i, 3), lin(i, 4)), O
(lin(i, 3) - lin(i, 1))

'loop t draw the cross hatching on the wire
‘ POR j = 0 TO (1in(i, 3) - lin{i, 1)) STEP 20
x = 1lin(i, 1) + 3
y 2 lin(4d, 2) + m * 5§
LINE (x - 4, v + 4)-(x + 4, y - 4), O
LINE (x + 4, vy + 4)-(x - 4, ¥y - 4), 0
NEXT 3
NEXT 4

'draw the magenta grid lines every 200 meters
170 FOR i = 200 TO 800 STEP 200

LINE (i, 0)-(i, 1000), 13

LINE (O, i)-(l000, i), 13

NEXT i

'copy the map to the hidden screen
PCOPY 0, 1

‘call the approriate subprogram based on user input options
ON opt% GOTO 171, 172, 173, 174

171 LOCATE 1, 1: PRINT "HIT <CR> to continue." ‘'view map
ans$ = INPUTS(1)
GOTO 175

172 CALL wire ‘emplace obstacle
LOCATE 1, 1: PRINT "HIT <CR> to continue.”
ana$ = INPUTS(1l)

GOTO 175

173 CALL contour 'view contour interval data
LOCATE 1, l: PRINT "Hit <CR> to exit map"

e$ = INPUTS(1)

GOTO 175

174 CALL los 'line of sight checks

195

el i Aok st S et e s

D e e P ORTS 1 o o AR T,

175 END SUB

SUB mapp
TRRRRRRRRRRRRRRRRRARRRRRRRKARRRRIRRRRRRRRRREKRRRRRRRRARKRRR

'MApp is the main menu for the terrain editor. It loads the
'‘default data into data arrays, allows the user to view data,

'input obstacles, and creates the .axp file for SPARTAN.
AR AR AR RRA AR R RN RARARARARRRARRRARRRRNRRARRRRRARRRARRA AR RNk

CLS
OPEN "mapl.dat" FOR INPUT AS 31
COLOR 15, 1

CLS
LOCATE 10, 20: PRINT "STANDBY WHILE TERRAIN ARRAY IS LOADED"

'load data array with default data
" FOR i =1 TO 50
FOR j =1 TO 50
INPUT #1, mapl(i, 35, 1),,mapl(i 3, 2), mapl(i, 3, 3)
. NEXT 3
NEXT i
“LOSE #1

DO
CLS o
lefty = 10: right% = 70: top% = 4: bottomb = 22: fore$ = 15:
& backs = 1
WIDTH 80, 25 ,
CALL frame(left%, right%, top%, bottom%, fore%, backh)
LOCATE 6, 20: PRINT "TERRAIN DATA FILE EDITOR MENU"
LOCATE 8, 20: PRINT "l1) Look at map"
LOCATE 10, 20: PRINT "2) Add wire obstacle”
~ LOCATE 12, 20: PRINT "3) View elevation data and contour
& levels"” ;
LOCATE 14, 20: PRINT "4) View terrain dzta"
LOCATE 16, 20: PRINT "“5) Line of sight"
LOCATE 18, 20: PRINT "6) Terrain Editor Help"
LOCATE 20, 20: PRINT "7) Exit to main menu"
6 LOCATE 21, 20: ch$ = INPUTS(1)
SELECT CASE ch$
CASE "1"
COLOR 15, ©
CALL map(l)
CASE "2"
COLOR 15, ©
CALL map(2)
CASE "3"
COLOR 15, 0
CALL map(3)
CASE "4" '
CALL TERRAINDAT
CASE "5"

196

COLOR 15, 0
CALL map(4)
CASE "6"
CALL maphelp
CASE "7"
CLS
CALL frame(l0, 70, 4, 7, 15, 1)
LOCATE 5, 25: PRINT "STANDBY WHILE DATA FILE LOADS"

'load edited data into .exp file

OPEN "mapl.exp" FOR OUTPUT AS §2
FOR i = 1 TO 50
‘ FOR j = 1 TO 50
WRITE $#2, mapl(i, j, 1), mapl(i, 3, 2), mapl(i, j, 3)

NEXT 3j

NEXT i

CLOSE #2

EXIT DO

CASE ELEE
BEEP
LOCATE 20, 20: PRINT “"Try again, GOMER"™
GOTO 6

END SELECT

LCOP

END SUB

SUB opening ’
T RRRIRRRARRRR AR RRRERR AR AR AR R ARR AR AR ARIRRR SR RN R

' Opening screen for the preprocessor
%9 0 e 3k 9 gk 9k o 9k 9 ok o ko 9 ok ok 5k ok o 5 Sk o 3k ok i ok ok o o ko o ok 9 o o 9k ok o ok 9 o ok ok ok ok o o ok o o ok

CLS

lefts = 1: right® = 80: top% = 3: bottom% = 22: foret = 15:
3 back% = 9

CALL frame(left%s, right%, top%, bottomt, fore%, backh)

leftd = 9: right% = 72: top% = 10: bottom% = 16: fore% = 15:
& backd = 9

CALL frame(left%, right%, top%, bottom®, fore$, backh)

LOCATE 13, 25: PRINT " SPARTAN II COMBAT MODEL"

LOCATE 19, 22: INPUT "Press <Enter> when ready to continue”,
& start

END SUB

SUB phit

T RRR AR ERRRRRRRRERRARERRA AR A RRNRARRRARRARRARLERRR AR KRR RIRRRRRK
'PHIT is the subprogram that is the Pnit editor main menu. It
'reads the default data files into arrays, calls to various
editor functions as the user inputs choic2s, and creates the

'.exp data files for SPARTAN
VRRAR KRR KRR oo ok ok e ok ko o ok ok ok 9 Sk o o e ek ek e e e e e e ok

197

CLS
COLOR 15, ¢
CLS
LOCATE 10, 20: PRINT "STANDBY WHILE ACCURA”Y DATA IS LOADED"
OPEN "ml6.dat" FOR INPUT AS #1
OPEN "ak74.dat™ FOR INPUT 2S #2
OPEN "saw.dat"” FOR INPUT AS #3
FOR i =1 T0 8
FOR j = 1 TO 4
INPUT #1, pl(i, 3)
INPUT #2, p2(i, 3J)
INPUT #3, p3(i, 3j)
NEXT j
NEXT i
CLOSE #1: CLOSE #2: CLOSE #3
Do
CLS
left% = 10;: right% = 70: top% = 4: bottom% = 18: foret = 15:
& back% = 9
WIDTH 80, 25
CALL frame(left%, right%, top%, bottom%, fored, backh)
LOCATE &, 20: PRINT "WEAFPON ACCURACY DATA FILE EDITOR MEN
LOCATE 8, 20: PRINT "1) Review accuracy data"
LOCATE 10, 20: PRINT "2) Add weapon type"
LOCATE 12, 20: PRINT "3) Phit Editor HELP"
LOCATE 14, 20: PRINT "4) Exit to main menu"
3 LOCATE 21, 20: ch$ = INPUTS(1)
SELECT CASE ch$
CASE "1"
CALL cphit
usz "2"
CALL addwpn
CASE "3"
CALL phithelp
CASE "4"
CLS
CALL frame(10, 70, 4, 7, 15, 9)
LOCATE 5, 25: PRINT “STANDBY WHILE DATA FILE LOADS"
OPEN "PlHIT.exp"™ FOR OUTPUT AS #4
OPEN "P2HIT.ex»" FOR OUTPUT AS #5
OPEN “P3HIT.exp" FOR OUTPUT AS #6
FOR i =1TO 8
FOR 5 = 2 TO 4
PRINT #4, pl(i, 3)
PRINT #5, p2(i, 3J)
PRINT %6, p3(i, 3J)
NEXT 3
NEXT i
CLOSE #4
CLOSE $#5
CLOSE #6
EXIT DO
CASE ELSE

198

BEEP
LOCATE 16, 20: PRINT "Try again, GOMER"
GOTO 3
END SELECT
LOOP
END SUB

| SUB red (opt%, r)

- 205

’ LOCATE 9, 1:

R RRRRRRRRR AR AARRR AR AR RNRRRRERR KRR L TR AR R RRA KRR R AR
'RED serves the same function for the RED soldiers that BLUE
'does for BLUE forces. It prints out read =oldier attribute
'values and allows the user to view, add, cdelete or edit thosq

] .
values.
AR AR AR R AR R TR R ERRRRRREARRRRRARRRRRKIARRRARR AR AR R R AR Rk R

CLS
! WIDTH 80, 25
i'view current soldier attribute values

' LOCATE 5, 30: PRINT "RED SOLDIER DATA"

; LOCATE 8, 1: PRINT "SOLDIER DUTY LOCATION MOVEMENT
STATUS POSTURE WEAPON"
PRINT " POSITION DIRECTION

j=0
FPOR 4i = 1 TO 12

IPF soldat(i, 1) > -1 THEN GOTO 216

j=3+1

LOCATE 10 + j, 3: PRINT i

LOCATE 10 + j, ll: ON soldat(i, 2) GOTO 201, 202, 203, 204,
201 PRINT "sQD LDR"
GOTO 206
PRINT "TEAM LDR"
GOTO 206
PRINT “GRENADIER"
GOTO 206
PRINT "SAW GUNNER"
GOTO 206
PRINT "RIFLEMAN"

202
203
204
205

206 LOCATE 10 + 3j, 23: PRINT USING "###"; soldat(i, 3);
soldat(i, 4)
LOCATE 10 + j, 36: PRINT USING "##3"; soldat(i, 8) * 180 /
3.1415
LOCATE 10 + j, 46:

IF soldat(i, 9) = 0 THEN

PRINT “STATIONARY"

GOTO 207

END IP

199

3 -
/ Voo
. . ! R i

PRINT "MOVING"

207 LOCATE 10 + j, 57: ON soldat(i, 10) GOTO 208, 209, 210
208 PRINT "“STANDING" _

GOTO 211

209 PRINT “CROUCHING"

GOTO 211 _

210 PRINT “PRONE"

211 LOCATE 10 + j, €9: ON soldat(i, 11) GOTO 212, 213, 214,
215 .
212 IF soldat(i, 2) = 3 THEN

PRINT "M203"

GOTO 216

END IPF

PRINT "M16A2"

GOTO 216

213 PRINT "AK-74"

GOTO 216

214 PRINT "SAW"

GOTO 216 .

215 PRINT "OTHER"™

216 NEXT i | o
LOCATE 1, 25: PRINT "HIT <CR> to continue"

P v

e$ = INPUTS(1)

'based on user chocice: opti= 0---depart editor | :
l-~--delete one or more red soldiers

2---add one or moore soldiers

IF optd = 0 THEN GOTO 221
IF opt® = 2 THEN GOTO 218

'delete a soldier

217 LOCATE 11 + 3j: INPUT "Which soldier do you want to
delete?”, ad% ‘

" IF soldat(ds, 1) > -1 THENR

PRINT “The number you input is not a red soldier, try again."
GOTO 217

END IP

FOR i = 1 TO 15

soldat(ds, i) = 0

NEXT 1

GOTO 221

' Add one or more soldiers

218 CLS

LOCATE 2, 20: PRINT "INPUT RED SOLDIER DATA"
LOCATE 6, 4: PRINT "DUTY POSITION"

LOCATE 7, 4: PRINT "X GRID COORD"

LOCATE 8, 4: PRINT "Y GRID COORD"

LOCATE 9, 4: PRINT "#GRENADES"

LOCATE 10, 4: PRINT "TIME FIRED"

200

i
et
/

LOCATE 11, 4: PRINT "NOT USED"

LOCATE 12, 4: PRINT "MOVEMENT DIRECTION"
LOCATE 13, 4: PRINT "MOVEMENT STATUS"
LOCATE 14, 4: PRINT "POSTURE"

LOCATE 15, 4: PRINT "WEAPON TYPE"

LOCATE 16, 4: PRINT "ROUNDS PER MAGAZINE"
LOCATE 17, 4: PRINT "NUMBER MAGAZINES"
LOCATE 18, 4: PRINT "TARGET 1D"

LOCATE 19, 4: PRINT "WOUND STATUS"

FORi=1TOT«r
FOR 4 = 1 TO 12
IF soldat(3, 2) > 0 THEN GOTO 219
LOCATE 3, 18 + i * 10: PRINT "SOLDIER"; i
soldat(j, 1) = 0
FOR k = 2 TO 15
LOCATE 3 + k, 18 + i * 10: INPUT soldat(3j, k)
NEXT k
GOTO 220
219 NEXT 3
220 NEXT i
221 END SUB

SUB SOLDIER

AR R AR R AR RR AR RN R AT RRARRRRRRRRARRARRERRERRRRERRARR TR RN R
'SOLDIER is the main menu for the soldier attribute editor
'It reads default data into data arrays, allows the user to
‘access editor functions, and reads the altered data array

‘into the .exp file for SPARTAN.
RN R KRR KK R AR ARERRRRANRRARRRARRRRRRRRRRRRAR AR RRARRRA N R

CLSs

OPEN "joe.dat"™ FOR INPUT AS #1

COLOR 15, 9

CLS :

LOCATE 10, 20: PRINT "STANDBY WHILE SOLDIER DATA ARRAY IS
LOADED"

FOR 4 = 1 TO 12 'read data £file
FOR j = 1 TO 15
INPUT #1, soldat(i, 3j)
NEXT 3
REXT 4
CLOSE #1

DO

CLS

leftS = 10: right% = 70: top% = 4: bottom% = 23: fored = 15:
back% = 9

WIDTH 80, 25

CALL frame(left%, right%, top%, bottom%, fore%, backy)
LOCATE 6, 20: PRINT "SOLDIER DATA FILE EDITOR MENU"

201

S M SRR DAY R e

LOCATE 8, 20: PRINT "l) Look at Blue Sguad”
LOCATE 10, 20: PRINT "“2) Look at Red Squad”
LOCATE 12, 20: PRINT "3) Delete scldiers"
LOCATE 14, 20: PRINT "4) Add sonldiers"
LOCATE 16, 20: PRINT "5) Edit soldier attributes"
LOCATE 18, 20: PRINT "6) Pick formation and location”
LOCATE 20, 20: PRINT "7) Soldier Editor Help"
LOCATE 22, 20: PRINT "8) Exit to main menu"
7 LOCATE 21, 20: ch$ = INPUTS(1l)
SELECT CASE ch$:
casE '(l"

CALL blue(o 0)
CASE "2"

CALL red(o 0)
CASE "3"

CALL delete
CASE "4"

CALL add
CASE "5"

CALL joeatrib
CASE "6"

CALL format
CASE "7"
CALL joehelp
CASE “8"

OPEN "joe.exp" FOR OUTPUT AS #2 ‘create .exp file
FOR i = 1 TO 12 : '
FOR J = 1 TO 15
PRINT #2, soldat(i, 3j)
NEXT 3
NEXT 4
CLOSE #2

EXIT DO _ » , . _
CASE ELSE , : e
BEEP ‘
LOCATE 22, 20: PRINT "Try again, GOMER"
GOoTO 7
END SELECT
LOOP
END SUB

SUB TERRAINDAT
TRRRARARRRRRRRRRRRRARRRRRRRRRRRARRRRARRARRARA AR RRRR AR RARXRRRR

'TERRAINDAT allows the user to view the values of the terrain

'cell's three attributes
TRRARRNRRRRRRRRRRRRRRRRRRRRERRRERARRANRRARRI RN RARRRRRARR KRR

cLs
CALL frame(10, 70, 4, 7, 15, 9)

202

LOCATE 5, 3U: PRINT "TERRAIN DATA FILE"

LOCATE 11, 1: PRINT "X WEX Y HEX"

LOCATE 12, 1: PRINT "INDEX INDEX"

LOCATE 11, 26: PRINT " MOBILITY ATTENUATION ELEVATION"
LOCATE 12, 26: PRINT " FACTOR FACTOR (meters)"
x =0

'this controls the amount of cell dat# appearing on the screen
‘to prevent scrolling

VIEW PRINT 13 TO 24
FOR i = 1 TO 50 'load terrain data matrix
FOR 3 = 1 TO 5¢
x=x+1
PRINT i, j, mapl(i, 3j, 1), mapl(i, J, 2), mapl(i, j, 3)
IF x = 10 THEN GOTO 231
230 NEXT 3
NEXT 1

GOTO 222

231 PRINT "Do you want to continue? I/N"
ans$ = INPUTS(1l)

iF ana$ = "y" THEN

x=0 .

GOTO 230

END IP

232 VIEW PRINT

END SUB

SUB wire
AR AR AR R AR R RRRRRRRRRRRRRRARRARR AR AR RRRRRNRNRRRRRRRRE

'WIRE allows the user to input a wire obstacle and to view it.
It also creates the obstacle file and alters the mobility
‘factor of the terrai§ cells through which the obstacle

1]
passes. §
e e T a e s S e T

\

SHARED 1 \
PCOPY 1, 0 \

VIEW (140, 150)-(550, 200), 9, O
1=0

2401 =1 +1

‘query the user for input

LOCATE 20, 20, 0: PRINT "Input obstacle starting X and Y
coordinates™

LOCATE 21, 22, 0: PRINT "For example <725,856> ."

LOCATE 21, 45, 0: INPUT x1, yl

LOCATE 22, 20, O0: PRINT "Input obstacle ending X and ¥

& coordinates"

203

R Yo S I A

-
i
By
kA
LS
%
"

LOCATE 23, 22, 0: PRINT "For example <345,999> ."

LOCATE 23, 45, 0: INPUT x2, y2
LOCATE 25, 20, 0: PRINT "To view obstacle hit <CR>"

LOCATE 26, 20, 0: e$ = INPUTS$(1)
VIEW
PCOPY 1, O

'‘ensure the obstacle is not vertical (infinite slope)

IF x1 = x2 THEN x2 = x2 + 1
IF xl > x2 THEN
" X = x1: x1 = x2: %2 = x
Yy = yl: yl = y2: y2 = y
END IF

lin(1l, 1) = xl: lin(l, 2) = yl: lin(l, 3) = x2: 1lin(1l, 4)=y2

'draw the obstacle
LINE (x1, y¥l)-(x2, y2), O

'compute egquation of obstacle
m= (y2 - yl) / (%2 - x1)
b=yl -m* xl1

'loop draws cross hatching on obstacle
FOR i = 0 TO ABS(x2 ~ x1) STEP 20

X =x1+ 43
y=yl+m*4{
LINE (x ~ 4, ¥y + 4)-(x + 4, ¥y - 4), O
LINE (x + 4, y + 4)-(x - 4, ¥y - 4), 0
NEXT 4
PCOPY 0, 1

‘loop to update mobility factor of terrain cells
FOR k = x1 TO x2

x = INT(k / 20 + 1)

y = INT((m* k +b) / 20 + 1)

mapl(x, y, 1) = .1
NEXT k

PCOPY 0, 1
LOCATE 1 1: PRINT "Bit <CR> to return to Terrain Editor Menu"

e5 = INPUTS(I)
PCOPY 1, O

OPEN "obs.exp™ FOR OUTPUT AS #1 'create obstacle file

FOR 1 =1T01

WRITE #1, lin(i, 1), lin(i, 2), lin(i, 3), lin(i, 4)
NEXT 4

CLOSE $#1

END S8UB

204

This appendix contains the program code for the SPARTAN
simulation model. The code is written in QuickBASIC 4.S.

The code is contained in three separate modules.
SPARTAN.bas module contains the simulation code. The module
display.bas contains all the subprograms that deal with user
requested status updates. The module mainhelp.bas contains
all the help files. DISPLAY and MAINHELP are not included
in this apperdix because they consist solely of formatted
display screens of text and data arrays. In addition, ail
information contained in the help screens is in the thesis
in Chapter IV and in the user's manual.

The same notation used in Appendix E is in effect in

this appendix.

205

T RRRRRRRRAXRRRARERARRRRRERRARKRRRNRANRRRARRRR RN A RRRRANRRRNRR

‘%]
"% SPARTAN Simulation Code : *
i **Main Module** , *

*

LR
TRARKI AR RRRRERRRXRNRRR AR KRR RER AR AR RR R Rhk ke k ik der

TRRRRRR R KRR R RRRRRAN KRR AR RRRR AR AR RRRERRRNRRARRRRARRRRRRR

‘The main module contains all subprograms that make the
'simulation work: the outer execution loop, initialization
'programs, and the subprograms for all combat processes.

- The 'primary function of this first subprogram is to define
all 'subprograms, arrays, and to define the terminating
'conditions. This module also contains the logic that

‘terminates the simulation.
TRRRRRRKARRRRRRRRARRRRRREARARRRERERCRRARARERRRRARRR AR RRRARRR

'This section declares all suhproqrams and functions in used
'in the simulation.

DECLARE SUB soldier () :displays current soldier attribute
values

DECLARE 5U3 schevent () ‘'displays all eveants .on calendar

DECLARE SUB pottgt () 'displays currant detected target list

DECLARE SUB battlestat () 'displays battle statistics

DECLARE SUB killcard () 'displays hit information per weapon

‘type

DECLARE SUB explain () 'displays information about how to
'use SPARTAN

DECLARE SBUB maindisplay () ‘main menu for all user requested

‘reports
DECLARE SUB explode (x!, y!, r!) 'draws explosions on screen
DECLARE FUNCTION triag! (a!, 4!, B!) ‘'triangle function
DECLARE SUB evat () ‘'pulls next scheduled event off calendar
DECLARE SUB move (ind!, tnow) 'moves soldiers
DECLARE SUB frame (left\,rightS,tops,bottomS, fored, backs)
DECLARE SUB init () 'initializes all data arrays
DECLARE SUB map () ‘draws map
DECLARE SUB schedule (act, ind, T) ‘'adds events to calendar

DECLARE S8UB los (obs, tgt, x, ¥, x2, y2, r) ‘'checks line of
' sight from observer to target

DECLARE SUB acquire (obs, time) ‘'target detection subprogram
DECLARE SUB selct (obs, time) 'target selection subprogram
DECLARE SUB shoot (obs, time) 'direct fire engagement
'subprogram

DECLARE SUB wire (obs) obstacle detection subprogram
DECLARE SUB breach (side, tnow)'initiates cobstacle breaching
DECLARE SUB endbreach (ind, time)' movos squad through breach
DECLARE SUB refresh () ‘refreshes screen

DECLARE SUB impact (tgt) ‘'determines results of round impact
DECLARE 8UB react (tgt, time) 'determines reaction to fire
DECLARE SUB direction (obu. time) ‘changes squad's direction
DECLARE SUB indirect (obs, time) ‘indirect fire engagements

206

DECLARE SUB adjust () 'alters terminating conditions

'This section defines common arrays and variables that are
‘used across all modules.

soldat contains all soldier attribute values

event is the current event calendar

ptgt is the matrix of potential targets ‘
bluecount is the starting number of tlue soldiers
redccunt is the starting number of red soldiers
activeblue is the number of blue sc.diers remaining
activered is the number of red soldiers remaining
timetostop is the flag to stop the simulation '

- @ @ ® o ® a o

COMMON SHAREb soldat(), event(), ptgt(), tgtrec(),
bluecocunt, & =redcount, activeblue, activered, timetostop

'obs = observer 1D

'time = current simulation time

'rwire = f£lag of RED identifying presence of chstacle
'bwire = flag of BLUE identifying presence of obstacie
'rbrch = flag of RED breach status

'bbrch = flag of BLUE breach status

COMMON SKARED obs, time, rwire, bwire, bbrch, rbrch

'DYNAMIC creates the data arrays outside the 64K sat aside
by DOS for program execution
'SDYNAMIC

'This section defines the data arrays
DIM SHARED soldat(12, 17) 'matrix of soldier attributes
DIM SHARED event(99, 3) 'event calendar
DIM SHARED ptgt(l2, 12) '‘potential target list
DIM SHARED tgtrec(8, 4) 'weapons' hit data record
DIM SHARED barray(0 TO 102) ‘array containing blue icon
DIM SHARED rarray(0 TO 102) ‘array containing red icon
DIM SHARED array2(0 TO 102) 'array icon to erase old
' soldier's positions
DIM SHARED darray(0 TO 102) 'array containing dead icon
DIM SHARED lin(10, 4) 'obstacle matrix
DIM SHARED thresh(l12, 12) ‘'random threshold observer-target
' Pinf values
DIM SHARED woods(1l0, 4) 'matrix of Pinf values for targets
' in wooded areas
DIM SHARED nowoods(10, 4) 'matrix of Pinf values for targets
' not in wooded areas

DIM SHARED corl(l0, 4) 'cycles resolvable by the observer
' for targets not in wooded areas
DIM SHARED pl(8, 3) 'M16A2 Phit table

NIM SHARED p2(8, 3) 'AK74 Phit table

i'M SHARED p3(8, 3) "S8AW/RPK74 Phit table

nIM SHARED p5(8, 3) 'User input Phit table

DIM SHARED pé6(8, 3) ‘User input Phit table

207

E BT J0 8 4 0 vt NI i 0 Mt

g, o
b &

¥

it ?mw%‘iﬂﬁméi N ; CLGTART T %P e R ’,,‘. R RS s .‘_‘,.u:; e ;;,‘};5‘,‘.‘.)

DIM SHARED mapl(50, 50, 3) = 'terrain cell data

'This section identifies default terminating conditions
'termevat = number of events processed
‘timestop = simulation time passed
'bluestop = blue soldiers remaining
" 'redstop = red soldiers remaining

DIM SHARED termevnt, timesfop, bluestop, redstop
LET termevnt = 5000: LET timestop = 350: LET bluestop = 6:
LET & redstop = 1

‘turn on function keys

' P(l) accesses the main displly menu
ON KEY(1l) GOSUB 1000 : .
KEY(1) ON

' P(2) refreshes the screen

ON KEY(2) GOSUB 2000

KEY(2) ON

‘Open the history file
OPEN "history.dat™ FOR OQUTPUT AS #10
COLOR 15, 9

‘Initialize the data arrars
CALL init

'Display expanatory screen
CALL explain

SCREEN 9, , 1, 1

WIDTH 80, 43

‘drav the map
CALL map

'initialize startime which is used to tie simulation clock
‘advancement to passage of real time

starttime = TIMER

timeon = 1

quit = 0: timetostop = 0: activeblue = bluecount: activered
= & redcount

'Continue processing events until one of the termirating
‘conditions is met

DO WHILE timetostop = 0
CALL evnt ‘pull the next event off the calendar

quit = quit + 1 ‘count number of events processed

‘check terminating conditions
IF (quit >= termevnt OR time >= timestop OR activeblue
& <=bluestop OR activered <= redstop) THEN timetostop = 1

208

LOOP

'close history file

CLOSE #10

CLS

LOCATE 10, 4: INPUT "Do you want to see final results?Y/N",
& ans$

IF ans$ = "Y" OR ans$ = "y" THEN

'show finial results if user requests

CALL soldier

CALL schevent

CALL pottgt

CALL battlestat

CALL killcard

END IPF

9 END

1000 :'Turn off advancement of real time while display is
'active. Resume time advancement when control retu-ns

' to the simulation

displaytime = TIMER

CALL maindisplay

CLS ’
8CREEN 9
COLOR 15, ©
CALL map
starttime = starttime + (TIMER - displaytime)
RETURN
2000 :
CALL refresh
RETURN

S8UB acquire (obs, time)
TRRARRRRRRRRAE AR RRRAAIRRRRRRREARRRRRRRRRRARARRRRRERARRRRRRRRRS

'ACQUIRE is the subprogram that checks all three conditions
'of target acquisition. If the observer is a squad leader
‘and there is an obstacle present, the routine calls to WIRE
'to see if the obstacle is detected. The routine then
‘checks all enemy soldiers to see if detection is possible.
'If, at any step, detection fails, then the routine begins
‘checking the next enemy soldier until all enemy soldiers
'have been checked.

P RRRRRRRRARRRARRRRARRARRREIRARRRARRRAARERARRARRRARRRIRRRR R R
'VARIABLES:

' nexttime = variable to define start search time for event
' losl = flag to denote line of sight

' bwire = flag for BLUE obstacle detection

' rwire = flag for RED obstacle detection

'sel = flag to denote whether any tarets were selacted

209

' obs = observer ID
' tgt= target ID

SHARED nexttime, losl buire, rwire
sel = 0

‘'check soldier for nonmove status or to see if he is dead

IF so.dat(obs, 15) = 0 OR soldat(obs, 1) = 0 THEN
nexttime = time + 100
GOTO 38
END IF

'if soldier is not a squad leader continue
IF soldat(obs, 2) > 1 THEN GOTO 95

‘else check for obstacle ;
IF soldat(obs, 1) > 0 AND bwire < 2 THEN GOTO 95 - o
IF soldat(obs, 1) < 1 AND rwire < 2 THEN GOTO 95
CALL wire(obs)

'loop for target detection
95 FOR 4 = 1 TO 12

'if target is the same side or is not a soldier then check
'next soldier '

IF soldat(obs, 1) = soldat(i, 1) OR soldat(i, 1) = 0 THEN

99

‘assign observer location v

xl = soldat(obs, 3): yl = soldat(obs, 4)
‘assign target location

x2 = soldat(i, 3): y2 = soldat(i, 4) S

'determine observer-target range
range = (((x1 - x2) " 2 + (yl - y2) * 2) = .5) / 1000

'if range greater than 1000 meters check next target
IF range > 1 THEN‘GOTO 99

'if range less than 50 meters then change both target and
'observer to nonmoving status
IF range * 1000 < 50 THEN
soldat{obs, 9) = 0
soldat(i, 9) = 0
END IF

'if the observer has already acquired this target go and
check 'line of sight

IF (ptgt(obs, i) > 0) THEN GOTO 91

‘assign critical value = threshold value for that observer- ;

210 ;-

R L PRt by R B B N 0 B o S N 5 R Y S L S R e R At g T ot

' target pair
crit = thresh(obs, 1)

'determine if the target is in a wooded area
hexx = INT(socldat(i, 3) / 20 + 1)
hexy = INT(soldat(i, 4) / 20 + 1)
IF (mapl(hexx, hexy, 1) < 1) THEN GOTO 93

‘adjust target dimensions according to target move status
and
' posture

‘target non moving
IF soldat(i, 9) < 1 THEN
IF soldat(i, 10) = 3 THEN 'tgt is prone
pinf = nowoods(INT(range * 10 + .5), 2)
cor = corl(INT(range * 10 + .5), 2)
GOTO 94
ELSE '‘tgt is crouched or standing
pinf = noweoods(INT(range * 10 + .5),1)
cor = corl(INT(range + 10 + .5),1)
GOTO 94
END IF
END IPF

'else the soldier is moving

IF soldat(i,10) = 3 THEN
pinf = nowoods(INT(range * 10 + .5), 4)
cor = corl(INT(range * 10 + .5), 4)
GOTO 94

ELSE
pinf = nowoods(INT(range * 10 + .5),3)
cor = corl(INT(range + 10 + .5),3)
GOTO 94

ERD IF

'target iz in the woods
93 IF soldat(i, 9) < 1 THEN
IF soldat(i, 10) = 3 THEN
pinf = woods(INT(range * 10 + .5), 2)
cor = corl(INT(range * 10 + .5), 2) * 775
GOTO 94
ELSE
pinf = woods(INT(range * 10 + .5), 1)
cor = corl(INT(range * 10 + .5), 1) * ,775
GOTO 94
END IF
2ND IF . o
IF soldat(i, 10) = 3 THEN ' 1
pinf = woods(INT(range * 10 + .5), 4) 7
cor = corl{INT(range * 10 + .5), 4) * ,775 4

211

GOTO 94 : Ny
ELSE o ‘ . ;////
pinf = woods(INT(range * 10 + .5), 3) .

cor = corl(INT(range * 10 + .5), 3) * 775 s
GOTO 94 :

END IF

'if the Pinf is less than the threshold, then no detetection
is possible, go to the next target

94 IF pinf < thresh(obs, i) THEN
ptgt(obs, i) =
GOTO 99
END IF

'If detection is possible, check line of sight
'obs = observer ID, i = target id

9] CALL los(obs, i, x1, yl, x2, y2, range)
'if los does not exist, the ptgt value is zeroed out ,
' and the observer checks the next target s s

IF (losl < 1) THEN
ptgt(obs, i) = 0 . .
GoTO 99 : .

" END IF =

'If detection is possible, and line of sight exists, then
'see if the observer can detect the target

'if the observer has already detected the target, check the

'next target
IF ptgt(obs, i) > 0 THEN GOTO 99

'{2 the taiget is movind or has fired the last 20 time
'units, adjust the target dimensions

IF soldat(i, 9) > 0 OR (time - soldet(i 6)) < 20 THEN cor = ,
& cor * 2 g

‘compute pfov
pfov = 1 - EXP(-1 / 6.8 * cor * (1.7 + 3.4 * (RND))) |

‘ 'if the observer has already once to detect the target or if
'a squad member has already detected the target adjust the

'Pdet
pdet = pinf * pfov + ABS(ptgt(obs, 1))

'Bernoulli trial to see if detection is made
IF (RND > pdet) THEN : _

212

' no detection, annotate the potential target list
'check the next target

ptgt(obs, i) = -.5 * pdet
GOTO 99

END IF

'detection, annotate the potential target list
ptgt(obs, i) = pdet

'loop to adjust the pdet values for squadmates
" FOR k =1 TO 12
'don't annotate the other side
IF k = i OR soldat(k, 1) <> soldat(obs, 1) THEN GOTO 92
IF ptgt(k, i) > -.5 AND ptgt(k, i) <= 0 THEN
ptgt(k, i) = ptgt(k, i) - .4 * pdet
END IF | |
92 NEXT k ;

'‘display message on the screen reflecting target detectzon
IF (soldat(obs, 1) > 0) THEN

strng$ = "Blue" }

ELSE |

strng$ = "Red " !
END IF :
LOCATE 1, 1

PRINT USING "& soldier detects enemy at #3# 8##”
& strng$; soldat(i, 3); soldat(i, 4) ;
!

adjust sel so after all enemy soldiers have been detected,
'a SELECT target event will be scheduled
sel =1 j
|

99 NEXT i
'schedule a select target

IF sel = 1 THEN

CALL schedule(2, obs, time + 5)

GOTO 98

END IF

CALL schedule(l, obs, time + RND * 40)
98 END SUB

213

SUB adijust
TRRRKRRARKIRKRRRRKRRERKRRRRR AR RRRRRKARKRKARKRRKRARRRARRRRRAR

'‘adjust allows the user to alter the simulation terminating
‘conditions. Users can alter the number of surviving
'soldiers, the number of events processed, or the simulation
‘time. Users can also turn off the linking of simulation
'time to real time and can dictate another random number

'seed.

' ***‘

SHARED bluecount, redcount, timeon
DO

CLS

WIDTH 80, 25

SCREEN 9

COLOR 15, 1 '
LOCATE 4, 25: PRINT “ADJUSTING TERMINATING CONDITIONS"

LOCATE 6, 4: PRINT "Initia) terminating conditions are:"
LOCATE 8, 10: PRINT "1) Total number of events---5000"
LOCATE 9, 10: PRINT "2) Time to stop---350 time units"
LOCATE 10 10: PRINT "3) 6 Blue =oldiers remaining"

LOCATE 11, 10: PRINT "4) 1 Red soldier remaining”

LOCATE 12, 10: PRINT "5) Random number seed---0"

LOCATE 13, 10: PRINT "6) Timer on"

LOCATE 15, 4: INPUT "Input the condition you wish to change
or (7) to quit"; ans$

SELECT CASE ans$ _

CASE "1"

LOCATE 16, 4: INPUT "Input new number of events (> 50)"; n
IF n < 50 THEN

PRINT "Your input must be greater than 50, try again"

ELSE

termevnt = n

END IF

CASE "2" '

LOCATE 16, 4: “INPUT "Input new time to stop (> 50)"; n

IF n < 50 THEN

PRINT "Your input must be greater than 50, try again"”

ELSE

timestop =

END IF

CABE "3"

LOCATE 16,4:INPUT "“Input new Blue soldiers remaining (> 0)"
n

n = INT(n)

IF n < 1 THEN

PRINT "Your input must be greater than 0, try again"

ELSE

bluestop = n

END IF

CASE "4"

LOCATE 16,4: INPUT "Input new Red soldiers remaining (> 0)"

n

214

n = INT(n)

IFP n < 1 THEN

PRINT “Your input must be greater than 0, * y again"
ELSE

"redstop = n

END IF

CASE "s5"

LOCATE 16, 4: INPUT "Input new random number seed (-32768 <
& seed <32767"; seed

IF seed < -32768 OR seed > 32767 THEN

PRINT “Your seed value is out of range, try again"
ELSE

RANDOMIZE seed

END IF

CASE "6"

LOCATE 16, 4: INPUT "Do you want the simulation clock tied
to real time? Y/N"; a$
IF a$ = "Y" OR a$ = "y" THEN
timeon = 1
ELSE
timeon = 0
END 1IF
CASE ELSE
EXIT DO
END SELECT
LOOP
END SUB

SUB breach (side, tnow)
PRARRRRRRRARNARRRRERRRRRAREARRRRRRARER AR RRAARRRRRRRRRK K

'BREACH adjusts the attributes of all squad members taat are
'currently enmeshed in a breaching operation. The
'attributes are changed to prone and nonmoving. In
‘addition, all moves for that side are deleted from the

'event calendar and an ENDBREACH scheduled.
TRRRARRRRRAREARRRR R AR RRRRARFRRRREARARRRARRERRRARA AR AR AR R

SHARED rbrch, bbrch

'display message

LOCATE 2, 1: PRINT "Breaching Obstacle"”

‘alter breaching flag to reflect breach in progress

2
2

IF side > 0 THEN bbrch
IF side < 0 THEN rbrch

‘loop to delete all move events for that side

FOR i =1 TO 99

215

IF event{(i, 1) <> 4 THEN GOTO 139
IF soldat(event(i, 2), 1) = side THEN
event(i, 1) = 0: event(i, 2) = 0: event(i, 3) =
END IF
139 NEXT i

'loop to alter soldier attributes
FPOR i =1 TO 12
1P soldat(i, 1) = side THEN
soldat(i, 9) =
soldat(i, 10) = 3 soldat(i, 7) =
END IF
NEXT 1

'schedule an ENDBREACH and a REFRESH screen
FOR 1 =1 T0 12 .
IF soldat(i, 1) = side THEN
X = tnow + 100
CALL schedule(5, i, x)
CALL schedule(8, i, x - 50)
GOTO 138
ERD IF '
NEXT 4
138 END SUB

8UB direction (obs, time)
TRRRARRRRRRRRRRRRRARRRRRRARARRRRRNRRRRARARRERRAARRRRAARR R AR AR

'DIRECTION is scheduled when a squad leader detects an
'enemy. The subroutine checks if the squad leader's target
'is more than 25 degrees off the current azimuth. 1If so, a
'direction change is directed for the squad. Regardless of
‘the direction, the squad is directed to come on line,

~Yoriented on the squad leader's direction cf travel.
CERRRRRRRRERRRRARRERRARAARARARRERARRRRRNRRRRNRRRRRRRARRRRRRRAR

IF soldat(obs, 1) = 0 THEN 202
SHARED nexttime, bbrch, rbrch, bwire, rwire

‘identify the side making Lhe breach

side = soldat(obs, 1)

'display message reflecting formation change
IF side > 0 THEN

strng$ = "Blue"

ELSE

strng$ = "Red"

END IF : :
LOCATE 1, 1: PRINT USING "& squad, adjust formation

216

"; strng$
'‘compute observer-target azimuth

x = soldat(obs, 3): y = soldat(obs, 4)
tgt = so0ldat(obs, 14)

%2 = soldat(tgt, 3): y2 = soldat(tgt, 4)
k = ATN(ABS((y2 - y) / (x2 - x)})

IF (y2 > y) AND (%2 < x) THEN k = 3.14) - k
IP (y2 < y) AND (22 < x) THEN k' = k + 3.141
IF (y2 < y) AND (x2 > x) THEN k = -k '
IF (yl = y) AND (x2 < x) THEN k = 3.141

dir = k
'‘check to see if azimuth is greater than 25 degrees

IF ABs(di: - soldat(obs, 8)) < ,436 THEN
'no direction change
dir = soldat(obs, 8)
ELSE
' ' a direction change, if there is wire present, alter the
' breach flag 80 a new breach must be effected :

IF side > 0 AND bwire > 0 THEN

bwire = 2
"IF bbrch < 2 THEN bbrch = 0
END IF
IF side < 0 AND rwire > 0 THEN
rwire = 2
IPF rbrch < 2 THEN rbrch =
END IF
END IF

'loop to update soldier location for new formation

FOR 1 =1 T0 12
j=14
IF soldat(j, 1) = side AND soldat(j, 15) > O THEN
soldat(i, 8) = dir
IP1 >9THEN § =41 - 9
IF j = 1 THER
soldat(i, 3) = x: soldat(i, 4) =
ELSEIF j = 5 THEN
soldat(i, 3) = x + 36 * COS(2.55 + dir): soldat(i, 4) = y +
36 * BIN(2.55 + dir) ,
ELSEIF § = 3 THEN
soldat(i, 3) = x + 30 * CO5(1.57 + dir): soldat(i, 4) = y +
30 * SIN(1.57 + dir)
ELSEIF j = 2 THEN
soldat(i, 3) = x + 56 * C08(1.39 + dir): soldat(i, 4) = y +
56 * SIN(1.39 + dir)
ELSEIF j = 4 THEN
soldat(i, 3) = x + 65.7 * COS(1.72 + dir): soldat(i, 4) = y

217

+ 65.7 * SIN(1.72 + dir)

ELSEIF 3§ = 9 THEN

soldat(i, 3) = x + 36 * COS(~-2.55 + dir): soldat(i, 4)
36 * S8IN(-2.55 + dir)

ELSEIPFP j = 7 THEN

soldat(i, 3) = x + 30 * COS(-1.57 + dir): soldat(i, 4)
30 * SIN(-1.57 + dir)

ELSEIF j = 6 THEN

soldat(i, 3) = x + 56 * C08(-1.39 + dir): soldat(i, 4) s
56 * SIN(-1.39 + dir)
ELSEIF j = 8 THEN
soldat(i, 3) = x + 65.7 * CO8(~-1.72 + dir): soldat(i, 4) = y
+ 65.7 * SIN(-1.72 + dir)

END 1P

END IP

NEXT i

202 nexttire = time + 100

201 END SUB

[] "
e <
+ +

[
) -
+

S8UB endbreach (ind, time)
TRRRRRRARRRRRRRARRRRRRRRKRKRARARARERARERERRARARAR R IR R RNk h ARk

'ENDBREACH is scheduled for 100 time units after a breaching
‘operation begins. The subroutine updates the breaching

'flag and the changes the attributes of the breaching

‘element to moving and standing. A move is also scheduled.
TRRRARKRRARERRRARERRRARRRRARARRRARRRRRANRRRRRARRRARRRRARRRA K

SHAREDlnextfime, rbrch, bbrch
side = soldat(ind, 1)

'loop to update soldier attributes

FPOR i =1 TO 12
IF soldat(i, 1) = side AND soldat(i, 15) > 0 THEN

soldat(i, 10) = 1 : soldat(i, 7) =1
soldat(i, 9) = 1
CALL schedule(4, i, time + .5 * i)
END IPF
149 NEXT 1

‘update breaching flags

IF side = 1 THEN
bbrch = 1

ELSE

rbrch = 1

END IF
nexttime
END 8SUB

time + .5

218

SUB evnt
TRRRERRRRAREERNARARERARNARRNRRARREARRRARRR AR AR AR RR kA X

'EVNT checks the event calendar for the nexzt scheduled
‘event, pulls it from the calendar, checks to see if the
'event should be processed or what until more “real time"
'has advanced, and then calls the subprogram referenced by

'the event.
I S I I I I T I T I I I T LI LI L

SHARED nexttime, time, starttime, timeon

‘loop to check all calendar event for the first scheduled
'event

24 FOR i = 1 TO 99 .
'‘if the event ID = 0, it is empty
IF event(i, 1) < 1 THEN GOTO 10

'if the event time is less than nextime, it is the ranking
'event rofor execution

IF event(i, 3) <= nexttime THEN

opt = i
nexttime = event(i, 3)
END IF
10 NEXT i

ind = event{opt, 2)
evt = event(opt, 1)

time = nexttime

‘zero out the event array row for the pulled event
event(opt, 1) = 0: event{(opt, 2) = 0: event(opt, 3) = 0

f%# the soldier was deleted, get another event

IF soldat(ind, 1) = 0 THEN
nexttime = time + 100
GOTO 24 3

END IF

'if the simulation clock is tied to real time check time
'advancement

IF timeon = 1 THEN
x = (starttime + time) - TIMER
IF x <= 1 THEN GOTO 22

SLEEP INT(x)
END IF

'write the event to the history file
22 WRITE #10, evt, ind, time

219

'display event message on screen

LOCATE 1, 60: PRINT USING “"Time now is ###.2#2"; time
LOCATE 2, 60: PRINT "EVENT "; evt; " ACTOR ": ind
IF time < T THEN e$ = INPUTS(1)

= time

‘call the subprogram referenced by the event

ON evt GOTO 11, 12, 13, 14, 15, 16, 17, 18, 19
1l CALL acquire(ind, time)

GOTO 23

12 CALL selct(ind, time)

GOTO 23

‘13 CALL shoot(ind, time)

GOTO 23

14 CALL move(znd timz)

GOTO 23

15 CALL endbreach(ind, time)
GOTO 23

16 CALL react(ind time)
GOTO 23

17 CALL direction(ind, time)
GOTO 23

18 caLL refresh

GOTO 23

19 CALL indirect(ind time)
23 END SUB l :

SUB explode (x,'y, r)
A ***************\t***

' EXPLODE draws 'explosions on the screen
e e T T T T R T T T ey e)

'VARIABLES:
' x is the horizontal coordinate

'y is the vertical coordinate
' r is the burst radius

PLAY "t8o0"
BOUND 250, 2.5
FOR 1 =1 TO 25
PLAY "164 nC"
NEXT i
PLAY "MBOOL32EFGEFDC"
Radius = r
FOR c# = 0 TO Radius STEP .5
CIRCLE (x, y), c#, 4
NEXT c#
FPFOR{i =1 TO 50
PLAY "164 nO"
NEXT 41
END S£UB

220

SUB impact (tgt)
CRARIAKAR KK N KRR R KKK KLk ok ok sk ok ke ok ko ko ke ok ok o e sk e e o ok ok ok

'IMPACT determines the results of a hit on a target. This
'subprogram is scheduled by either the SHOOT or the INDIRECT

'subprograms.
222 R I I I R I Y T Y P Y Y R R R R R R R e Y R s IITTIT

SHARED bluecount, redcount, activeblue, activered
x = soldat(tgt, 3): y = soldat(tgt, 4)
side = soldat(tgt, 1)

'if the soldier is already dead, process the next event
IF soldat(tgt, 15) < 1 THEN GOTO 179

'if the soldier is already wounded, his chances of being
'killed increase tu 50%

IF soldat(tgt, 15) = 1 AND RND > .5 THEN
GOTO 172
ELSE
GOTO 173
END IF

'if the soldier is not wounded, his chances of being killed

'are 30%
IF RND > .7 THEN

‘change soldier status to dead, prone, nonmoving
172 soldat(tgt, 15) o]
soldat(tgt, 10) 3
soldat(tgt, 9) = 0

'‘adjust the active soldier count

IF soldat(tgt, 1) < 0 THEN activered = activered - 1
IF soldat(tgt, 1) > O THEN activeblue = activeblue - 1

'loop to remove all scheduled events from event calendar
FOR i =1 T0 99
IF event(i, 2) = tgt THEN
event(i, 1) = 0: event(i, 2) = 0: event(i, 3) = 0
END IF
NEXT i
‘change icon color
PUT (x, y), darray, PSET

'if the soldier is a squad leader, change of command

221

IF soldat(tgt, 2) = 1 THEN
FOR i =1 TO 12
IF soldat(i, 1) <> side THEN GOTO 171
IPF soldat(i, 2) = 2 TEEN.
soldat(i, 2) =1
GOTO 173
, END IF
171 MEXT i
END IF
GOTO 179
END IF

'if the soldier is only wounded

'update status to prone, nonmoving, wounded
173 soldat(tgt, 15) =1

so’dat(tgt, 10) = 3

soidat(tgt, 9) = 0

nexttime = 5000

179 END SUB

SUB indirect (tgt, time)
TRRRRRRRRRERERERARRRRRRRARRA KRR RRARRRAR AR AR ERRLSRARIRRRRRRTRK

'INDIRECT processes all mortar fire missions. It is
'scheduled during the SELECT target event when the BLUE

'squad leader detects two or more targets.
TRRRRRAIR IR AR R RARRKARRRRKARKRRRXR AR A RRRRRRRRRE kKRR AR R TRk

x = soldat(tgt, 3): y = soidat(tqt, 4)

‘assign error term to account for map reading error
reference 'the target coordinates sent to the tubes

zxl = x + (triag(-100, 0, 100))
yl = y ¢+ (triag(-100, 0, 100))

'compute gun-target range
range = ((x1 - (-500)) ~ 2 + (yl - (500)) ~ 2) * .8
'compute deflection angle

k = ATN((500 - y1) / (1 + 500))
xmax = xl: xmin = x1: ymax = yl: ymin = yl

‘loop to make round launch sounds
FOR j =1 TO 6
SOUND 250, 2.5
FOR i = 1 TO RND * 20
PLAY "164 nO"
NEXT i
NEXT 3

222

'draw gun-target line (to grid sent to tubes)
LINE (x1, yl)-(-500, 500), 4

'loop to compute impact point of each round
FOR i =1 TO 6
'cbmpute horizontal and vertical impact point

x2 = x1 + triag(-.08, 0, .08) * range * SIN(k + 1.571) +
& triag(-.02, 0, .02) * range * SIN(k)

y2 = yl + triag(-.02, 0, .02) * range * COS(k) +
triag(-.08,
& 0, .08) * range * COS(k + 1.571)

'compute the mix and min horizontal and vertical impact
points

IF x2 > zmax THEN

xmax = x2
END IF
IF x2 < xmin THEN
xmin = x2
END IF
IF y2 > ymax THEN
ymax = y2
END 1IF
IF y2 < ymin THEN
ymin = y2
EKD IF

'‘draw explosion and make sound

PLAY "MBOOL32ErGEFDC"

Radius = 2C

FOR c§ = 0 70 Radius STEP .5
CIRCLE (x2, y2), c#, 4

NEXT c#

FOR 3 =1 TO 26
PLAY "164 nO"

NEXT 3

NEXT i

'draw casualty box

LINE(xmax + 13.5, ymazx + 13.5)-(xmin - 13.5, ymin -
13.5),0,B

'loop to determine if any soldiers were in casualty box

FPOR i = 1 TO 12 .
IF xmin - 13.5 > soldat(i, 3) OR soldat(i, 3) > xmax +

223

TR

i et PR T - 0

13.% & THEN GOTO 211 .
IF ymin - 13.5 > soldat(i, 4) OR soldat(i, 4) > ymax +
13.5
& THEN GOTO 211 '
LOCATE 2, l: PRINT "Hit on soldier "; i

'updatehit record for mortars for kill card

wpn = 7 :

tgtrec(wpn, 1) = tgtrec(wpn, 1) + 1

IF tgtrec(wpn, 2) < range THEN tgtrec(wpn, 2) = range
IF tgtrec(wpn, 4) = 0 THEN tgtrec{(wpn, 4) = range

IF tgtrec(wpn, 4) > range THEN tgtrec{(wpn, 4) = range
tgtrec(wpn, 3) = tgtrec{(wpn, 3) + range

'determine results of impact

CALL impact(i)
GOTO 213

'determine if soldiers were in suppression box

211 IF zmin - 100 > soldat(i, 3) OR soldat(i, 3) > xmax +
& 100 THEN GOTO 212

IF ymin - 100 > soldat(i, 4) OR soldat(i, 4) > ymax + 100
& THEN GOTO 212

LOCATE 2, 1l: PRINT USING " Soldier ## suppressed"' i

soldat(i, 10) = 3

soldat(i, 9) =

GOTO 213

'if no hits were made display message

212 LOCATE 2, 1: PRINT "No hits"
213 NEXT i

'loop to delay refresh and allow useL to view screen ,
FOR 3 =1 TO 100 :
PLAY "164 nO"

NEXT 3
CALL refresh
END SUB

SUB init
TRRRRRRRKRRRERERARS RRRARRARRRARRAKRRRAR KRR RRR KRR XR KRR kX

'INIT is the subprogram that initializes all data arrays.
¥ e sk e ok vt ke ok e o ok o o ok ko 3k e ok 3k ok o ok 5k e 3k 9k o ok 9k ok ok 9k ok ok 9k 3 o 3k o 3k o o ok % Tk ok o ek o o e ok o ok

CLS
SHARED 1
SHARED bwire, rwire, rbrch, bbrch

224

SEARED bluecount, redcount, activeblue, activered
SHARED nexttime

nexttime = 5000

CALL frame(lC, 70, 4, 7, 15, 9)

LOCATE 5, 26: PRINT "STANDBY WHILE DATA FILES LOAD"
OPEN "napl exp" FOR INPUT aSs #1

'read ter:ain data file

FOR i = 1 TO 50
FOR j = 1 TO 50
INPUT #1, mapl(i, 3j, 1), mapl(i, j, 2), mapl(i, j, 3)
NEXT 3j
NEXT i
CLOSE %1

‘read soldier attribute file R

OPEN "joe.exp'" FOR INPUT AS #1
FOR i =1 TO 12
FOR j = 1 TO 15
INPUT $#1, soldat(i, 3J)
NEXT 3
soldat(i, 16) = soldat(i, 3): soldat(i, 17) = soldat(i, 4)
‘update number of starting soldiers ‘

\\

IF soldat(i, 1) > 0 THEN bluecount = bluecount + 1 S

IF soldat(i, 1) < 0 THEN redcount = redcount + 1 -
NEXT i :)
CLOSE #1

'read obstacle data file s

OPEN "obs.exp" FOR INPUT AS #1
i=0
buwire
rwire
bbrch
rbrch
DO UNTIL
bwire =
wire
rwire
bbrch
rbrch
i=1i
1 =4 ’
INPUT $#1, lin(i, 1), lin(i, 2), lin(i, 3), lin(i, 4)
LOOP .
CLOSE #1

0
0
1
1

OF(1) .
'2=zwire in place no id, l=wire inplace id, O=no N

+ nuan

HOON N 1

'read initial event file

225 e

OPEN "event.exp" FOR INPUT AS #1
FOR 4 = 1 T0 99
FOR j =170 3
INPUT #1, event(i, 3j)
~IF EOF(1l) THEN GOTO 1
NEXT 3
NEXT i
1l CLOSE $#1

'read threshold Pinf values

OPEN "thresh. dat" FOR INPUT AS t 3
FOR i = 1 TO 12
FOR § = 1 TO0 12
INPUT #1, thresh(i, j)
NEXT 3j
NEXT i
CLOSE #1

‘read éinf data for targets not in wooded areas

OPEN "infnw.dat" FOR INPUT AS #1
POR i =1 T0 10 .
FOR j =1 T0 4
INPUT #1, nowoods(i, j)
NEXT Jj
NEXT 1
CLOSE #1

‘read Pinf data for targets in wooded areas

OPEN "infw.dat" FOR INPUT AS #1
‘'FOR i =1 T0 10 :
FOR j =1T0 4
INPUT #1, woods(i, 3J)
NEXT 35
NEXT i
CLOSE #1

'read cycles resolvable by the observer data

CPEN “cor.dat™ FOR INPUT AS #1
FOR 1 =1 TO 10
FPOR j =1 TO 4
INPUT #1, corl(i, 3)
NEXT 3
NEXT 1
CLOSE #1

'read M16 Phit data

‘read AK74 Phit data
'read SAW Phit data

226

it s Ao o

OPEN "plhit.exp" FOR INPUT AS §1
OPEN "p2hit.exp" FOR INPUT AS #2
OPEN "p3hit.exp" FOR INPUT AS #3

FOR 1 =11T0 8

FOR j = 1 TO 3
INPUT #1, pl(i, 3) -
INPUT #2, p2(i, 3)

INPUT #3, p3(i, 3j)
NEXT j
NEXT i
CLOSE #1: CLOSE $#2: CLOSE #3

‘read user Phit data

OPEN "p4hit.exp" FOR INPUT AS #1
FOR i =1T0 8
FOR j = 1 TO 3
IF EOF(l1) THEN GOTO 2
INPUT #1, p5(i, 3)
IF EOF(l) THEN GOTO 2
NEXT 3
NEXT i
2 CLOSE #1

'read user input Phit data

OPEN "p5hit.exp" FOR INPUT AS #1
FOR i =1 TO 8
FOR j =1 TO 3
IF EOF(l) THEN GOTO 3
INPUT #1, p6(i, i)
IF EOF(l) THEN GOTO 3
NEXT 3
NEXT i
3 CLOSE $#1

'‘call the subprogram that allows the user to alter the
'‘terminating conditions

CALL adjust
END SUB

SUB los (obs, tgt, x, ¥y, 22, ¥2, r)

R RA AR IR AR AR ERRRRARER KRR AR RRRRRRRAAERRRRRRRRREAARRRARRRRRR
'LOS i." the subprogram that determines line of sight from
'the target to the observer. LOS is a factor of terrain
'cell elevation, target posture, obser: esr posture, and the
‘visibility of the terrain cell (thir determines if the
'terrain cell contains wooded areas). LOS is called by the

'ACQUIRE and the SHEOOT subprograms.
AR RRRRRRAAANARRIRRERRRRARRRERRRRERRRERRRRRRARARARRARRRRRRK

227

SHARED losl
‘convert the range (r) to meters
r=r ¥ 1600

‘adjust the observer height and targét height based on .
posture '

hexx = INT(x / 20 + 1): hexy = INT(f / 20 + 1)
oht = 1

IF soldat(obs, 10) > 2 THEN oht = .25
IF soldat(obs, 10) = 2 THEN oht = .5

tht = 1

IF soldat(tgt, 10) > 2 THEN tht = .25
IPF soldat(tgt, 10) = 2 THEN tht = .5

'compute observer and target elevation

mapl(heix, hexy, 3) + 1.8 * oht

zl
mapl(INT(x2 / 20 + 1), INT(y2 / 20 + 1), 3) + 1.8 * tht

22

'compute slope of observer-target line
slope = (22 - z1) / ¢ | _
fassiqn flag wl = 1 if observer is in a wooded area

IP mapl(hexx, hexy, 2) < 1 THEN

w=1
ELSE

w=0
END IP

'determine angle of observer-target line

k = ATN(ABS((YZ -y)/ (x2 - x)))
IF (y2 > y) AND (x2 < x) THEN k

IF (y2 < y) AND (x2 < x) THEN k
IP (y2 < y) AND (x2 > x) THEN k

k +
k-
-k

1.571
3.141

'loop to check los in avery intervening terrain cell

l1T0r«r
x + 1 ®* Ccos(k): yn =y + i * SIN(k)

FOR i
xn

'if already checked elevation of terrain cell try‘next cell

IP INT(xn / 20 + 1) = hexx AND INT(yn / 20 + 1) = hexy
& THEN GOTO 165 , :

'else compute elevation of present cell

228

hexx = INT(xn / 20 + 1): hexy = INT(yn / 20 + 1)

‘check if still in wooded area and adjust elevation
‘accordingly

IF w 1 AND mapl(hexx, hexy, 2) = 1 THEN w = 0

IF w = 0 AND mapl(hexx, hexy, 2) < 1 THEN
znew = mapl(hexx, hexy, 3) + 10 / mapl(hexxz, hexy, 2)

ELSE
znew = mapl(hexx, hexy, 3)
END IF

'if elevation of cell does not block los continue to next
cell

IF znew <= zl + slope * i THEN GOTO 165

‘else los is blocked

losl = 0
GOTO 169
165 NEXT i
'if checked all cell and los is not blocked, then los exists
losl = 1
169 END SUB
SUB map

AR R AR KRR AR AR AR KRR R R R RN AR R RN AR KRR KRR KRR ARARERRRRRERAR KRR RS

'MAP is the subprogram that draws the screen map
AR KRR AR RN R KRR A AR RRRRRARRAARRRT KRR KRR RRR AR LA R RRRRRRRR

\

SHARED 1 !
SHARED rwire, pwire
SHARED nextt;me

CLS ‘
8CREEN 9, , 0,\0
WIDTH 80, 43 |

WINDOW (0, 0)-(1009, 1000)

‘paints the scrIen the white used to represent clear areas
PAINT (500, 500), 15

'draw the icons for the soldiers and captures them in arrays

100
100

b 4
b 4

229

‘draw blue icon first

‘draw head :

LINE (x - l, y + 8) (x + 2, y + 2), 9, BF
'body

LINE (x - 6, y + 2)-(x + 6, ¥), 9, BF

LINE (x - 3, ¥ + 1)-(x + 4,9 - 6), 9, BF
‘legs

LINE (x - 1, y - 5)-(x -3, y-14), 9, BF
LINE (x + 2!, ¥y - 5)-(x + 4, vy - 14), 9, BF
‘arms

LINE (x - 6, ¥y + 2)-(x -7, y - 6), 9, BF
LINE (x + 6, ¥y - 2)-(x + 8, ¥ - 6), 9, BPF
GET (93, 108)-(108, 86), barray

'draw red soldier
x = 100: y = 100

LINE (x - 1.5, gy + 5)-(x + 1.5, y + 4), 4, BF
LINE (x - 6, ¥y + 2)-(x + 6, y), 4, BF

LINE (x - 3, y+1)-(x+ 4, y-6), 4, BF
LINE (8 - 1' Yy - 5)'(8 - 3' Yy - 14)' 4’ BF
LINE (x + 2!, ¥y - S5)-(x + 4, y - 14), 4, BF

LINE (8 - 6' b 4 + 2)-(3 - 7' ’ - 6)' " BF
LINE (x + 6, § - 2)-(x + 8, y - 6), 4, BF
GET (93, 108) (108, 86), rarray

" 'draw dead icon
x = 100: y = 100

LINE (x -1, y + 8)-(x +1, y + 2), 3, BPF
LINE (x - 1.5, ¥ + 5)-(x + 1.5, y + 4), 3, BF
LINE (x - 6, ¥ + 2)-(x + 6, ¥), 3, BF
LINE (x - 3, y+1l)-(x + 4, ¥ - 6), 3 BF
LINE (x - 1' Yy - 5)‘(! - 3, Y- 14)' , BF
LIKE (x - 6, y + 2)- (x -7,y -6), 3, BF
LINE (x + 6, - 2)-(x +8, y~-6), 3, BF

GET (93, 108) (108, 86), darray
'‘draw wooded areas

LINE (40, 0)-{0, 380), 2, BF
LINE (160, 0)-(200, 320), 2, BF
LINE (200, 0)-(220, 300), 2, BF
LIKE (220, 0)-(280, 280), 2, BF
LINE (280, 0)-(283, 280), 9, BF
LIKE (220, 280)-(283, 283), 9, BF
LINE (200, 300)-(220, 303), 9, BF
" LINE (0, 380)-(40, 383), 9, BF

230

LINE (40, 360)-(160, 365), 9, BF
LINE (40, 383)-(43, 360), 9, BF
LINE (160, 360)-(163, 320), 9, BF
LINE (160, 320)-(200, 323), 9, BF
LINE (200, 323)-(203, 300), 9, BF

'draw red and black roads

FOR i =1 TO 25

LINE ((1i - 1) * 20, 500 - 2 * (i - 1))-(i * 20, 500 - 3 - 2
* (i - 1)): » BF

NEXT i

FOR i = 25 TO 50

LIRE ((4 - 1) * 20, 449 + 3 * (i - 25))-(i * 20, 449 ~ 3 + 3
* (i = 25))r 4 BF

NEXT i

LINE (500, 0)-(505, 1000), O, B

FOR i = 0 TO 100C STEP 40 :

LINE (501, i)-(504, i + 20), 4, BF

NEXT i

LINE (480, 455)-(480, 465), 0

LINE (160, 840)-(240, 880), 2, BF

FOR i =1 TO 50

LINE (480 - (i - 1) * 15, 465 + (1 - 1) * 20)-(480 - 1 * 15,
465 + i * 20), O

NEXT i

LINE (330, 665)-(250, 665), 0

FOR i = 1 TO 25

LINE (250 - (i - 1) * 20, 665 + (i - 1) * 8)-(250 - i * 20,
665 + 1 * 8), O

NEXT i

FOR i = 1 TO 25

LINE (750 + (i - 1) * 10, 0 + (i - 1) * 15)-(750 + i*10, 0
+1i*15), 0

NEXT i

FOR i =1 TO 25

LINE (500 + (i -~ 1) * 18, 750 - (i - 1) * 9)-(500 + i * 18,
750 - i * 9), 0

NEXT i

‘draw contour lines

CIRCLE (150, 880), 50, 6, , , .45
CIRCLE (150, 900), 200, 6, , ,
CIRCLE (150, 900), 600, €, , ,
CIRCLE (1000, 800), 1100, 6, ,
LINE (1000, 840)-(900, 720), 2, BF
CIRCLE (1000, 800), 70, 6, , ,
CIRCLE (1000, 800), 120, 6, , » .25
CIRCLE (50, 50), 100, 6, , , .5
CIRCLE (S50, 50), 200, 6, , , .3

‘draw obstacle, if it exists

IF 1 = 0 THEN GOTO 20
FOR i =1T01
LINE (lin(i 1), lin(i, 2))-(lin(i, 3), lin(i, 4)),
= (lin(i, 4) - lin(i, 2)) / (lin(i, 3) - lin(i, 1))
B = lin(d, 2) ~ m * lin(i, 1) ,
FOR 3 = 0 TO (lin(i, 3) - lin(i, 1)) STEP 20
'x lin(i, 1) + 3
y = lin(i, 2) + m * j
LINE (x -~ 4, y+ 4)-(z+ 4, vy-4),0
LINE (x + 4, vy + 4)-(x - 4, ¥y - 4), 0
NEXT 3
NEXT 1

‘draw magenta grid lines

20 FOR i = 200 TO 800 STEP 200
LINE (i, 0)-(i, 1000), 13
LINE (0, i)-(1000, i), 13
NEXT 1

‘copy screen to alternate screen
PCOPY O, 1

'put icons on map if the entire icon will fit on the screen

FOR i =1 TO 12
IP soldat(i, 3) < 1 OR soldat(i, 3) > 984 THEN GOTO 21
IP soldat(i, 4) < 1 OR soldat(i, 4) > 979 THEN GOTO 21
IP soldat(i, 15) < 1 THEN
PUT (aoldat(i, 3), soldat(i, 4)), darray, PSET
GOTO 21
END IP
IP soldat(i, 1) = 1 THEN
PUT (soldat(i, 3), soldat(i, 4)), barray, PSET
IPF soldat(i, 2) = 1 THEN DRAW "c5 u8 rl0 d8 18"
ELSE
PUT (soldat(i, 3), soldat(i, 4)), rarray, PSET
IP soldat(i, 2) = 1 THEN DRAW "c¢5 u8 rl0 d4s 18"
END 1P
21 NEXT 4
nexttime = 5000
END 8UB

8UB move (ind, tnow)
P AR R R RN R RRRRR RN RRRRRRRAN AR RARRRRLRRRRRRRRRRTARR RN

'MOVE moves all icons. It updates the soldier location,
'moves the icon, checks the new location for obstacles, and
'schedules the next move. Moves are scheduled by this
‘subprogram, the SHOOT subprogram, and the ENDBREACH

'subprogram.
CRARRRRERRRRRARRRRRERRARRRRRRRRERRRRRRRRNRER KA AR AR AR AR AR R

232

’_.‘,..‘

SHARED nexttime, bmovetime, rmovetime, rbrch, bbrch

'if the scldier is dead or nonmoving, ¢et the next scheduled
'event and schedule another move

IF soldat(ind, 9) = 0 OR soldat(ind, 15) = 0 THEN
schedule (4,ind, 20)
nexttime = tnow + 100
GOTO 29

END IF

'if the soldier is BLUE continue
IF soldat(ind, 1) = 1 THEN
'if a breach is in progrzss, go to the next event

IF bbrch > 1 THEN
nexttime = tnow + 100
GOTO 29

END IF

'if the icon i s on the map screen erase it

x soldat(ind, 16)

Yy soldat(ind, 17)

IF x > 986 OR x < 0 THEN GOTO 28

IF y > 979 OR y < 0 THEN GOTO 28
SCREEN , , 1, O

GET (x, y)-(x + 16, y + 24), array2
SCREEN , , 0, O

PUT (x, y), array2, PSET

'compute the new soldier location

28 soldat(ind. 3)=soldat(ind,3) + 20 * COS(soldat(ind,8))
soldat(ind,4) = soldat(ind, 4) +20*SIN(soldat(ind, 8))
x = soldat(ind, 3): y = soldat(ind, 4)

'if the new location will accept an icon, place it on the
'screen

IFP x > 980 OR x < 0 THEN GOTO 29
IFP y > 979 OR ¥y < 0 THEN GOTO 29
PUT (x, y), barray, PSET .

‘check the new location for obstacles
soldat(ind, 16) = x: soldat(ind} 17) = y
hexx = INT(x / 20 + 1)

hexy = INT(y / 20 + 1)
IF mapl(hexx, hexy, 1) < .5 AND bbrch < 1 THEN

233

CALL dreach(soldat(ind, 1), tnow)
nexttine = tnow + 500

GOTO 29

END IF

'if the soldier is a squad leader, draw a bok around the

icon _ :
‘and compute the new movetime

IF soldat(ind, 2) = 1 THEN
DRAW "c5 u8 rlo d8 110"
hexx = INT(soldat(ind, 3) / 20 + 1)
hexy = INT(soldat(ind, 4) / 20 + 1)
IF mapl(hexx, hexy, 1) < .2 THEN
bmovetime = 10 + 10 * RND / soldat(ind, 10)

ELSE
: bmovetime = 10 + 10 * RND / (mapl(hexx, haxy, 1) *
& soldat(ind, 10)) '
END IPF '
END IF

'schedule the next move

27 CALL schedule(4, ind, tnow + bmovetime)
GOTO 29 ‘return '

END IP
'if the soldier is RED then
'if RED is breaching, cancel move

IF rbrch > 1 THEN
nexttime = tnow + 100
GOTO 29 . ‘

END IP

'if the soldier's icon is on the screen, erase it

X = soldat(ind, 16): y = soldat(ind, 17)
IF x > 986 OR x < 0 THEN GOTO 26

IPy > 979 OR y < 0O THEN GOTO 26

SCREEN , , 1, O

GET (x, y)-(x + 16, y + 24), array2?
SCREEN , , 0, O

PUT (x, y), array2, PSET

‘compute new soldier location
26 soldat(ind,3) = soldat(ind, 3) + 20 * CO8(soldat(ind, 8))

soldat(ind, 4) = soldat(ind, 4) + 20 * SIN(soldat(ind, 8))
x = soldat(ind, 3): y = soldat(ind, 4)

234

]
-

e Rl
Poe Al

'if the new location is on the map, display it

IP x > 980 OR x < O THEN GOTO 29

IFy > 979 OR y < 0 THEN GOTO 29

PUT (x, y), rarray, PSET :

soldat(ind, 16) = x: soldat(ind, 17) =
_hexx = INT(scoldat(ind, 3) / 20 + 1
hexy = INT(soldat(ind, 3) / 20 + 1

b 4
)
)
'check new location for obstacles

IF mapl(hexz, hexy, 1) = .1 2ND rbrch < 1 THEN
CALL breach(soldat(ind, 1), tnow)

nexttime = tnow + 500

GOTO 29

END IF

'if the soldier is the squad leader, draw a box around the
'icon and compute the next movetime

25 1IF soldat(ind, 2) = 1 THER
DRAW "¢5 u8B rl0 d8 110"
hexx = INT(soldat(ind, 3) / 20 + 1)
hexy = INT(soldat(ind, 3) / 20 + 1)
IF mapl(hexx, hexy, 1) < .2 THEN
rmovetime = 10 + 10 * RND / soldat(ind, 19)

ELSE
rmovetime = 10 + 10 * RND / (mapl(hexx, hexy, 1)

LA scldat(ind, 10))
END IF
END IF

'schedule the next move
CALL schedule(4, ind, tnow + rmovetime)

~ 29 END SUB

SUB react (tgt, time)
TRRERARNRRRRRRRRRRERRRNRRRRRRRRRRANRNRRRRRRAERER R AR R R RN RN

'REACT is the subprogram that determines the reaction of a
'soldier to being shoot at and missed. The subprogram is

'scheduled by the SHOOT and INDIRECT subprograms.
T RRAERRKERARRRENRARERRRRARERRARRARRRRRRRRARRRRARKRRAKRRRRRRARR

SHARED nexttime

'pick is the random number used for the Bernoulli trial
pick = RND

'if the soldier is staading then

235

IF soldat(tgt, 10) = 1 THEN

IF pick <= .5 THEN

soldat(tgt, 10)
-GOTO 191

END IF

IF pick <= .7 THEN
soldat(tgt, 10)
GOTO 191

END IF .

IF pick <= .8 THEN
soldat(tgt, 10)
soldat(tgt, 9) = 0
GOTO 191 ‘

END IF :

GOTO 191
END IP

n
N

"
(7]

3

'if the soldier is crouchi ig then

IF soldat(tgt, 10) = 2 THEN
IF pick <= .4 TREN
soldat(tgt, 10) = 3
GOTO 191
END 1IF
IF pick <= .5 THEN
soldat(tgt, 10) = 3
soldat(tgt, 9) = 0
GOTO 191
END IF
GOTO 191
END IF

'if the soldier is prone

IF soldat(tgt, 10) = 3 THEN
IF pick <= .5 THEN
soldat(tgt, 9) = 1
ELSE
soldat(tgt, 9) = 0
END IF
ERD IP

'update the history attribute to reflect current posture
191 soldat(tgt, 7) = soldat(tgt, 10)

'if the soldier is a squad lezder then ensure the rest of
'his squad adopts the new posture

IF soldat(tgt, 2) = 1 THEN
side = soldat(tgt, 1)
FOR i = 1 TO 12
IF soldat(i, 1) = side THEN

236

sollat(i, 9) = soldat(tgt, 9) ' A
soldat(i, 10) = soldat(tgt, 10) . |
soldat(i, 7) = soldat(tgt, 10) . \
END IF |
NEXT i . ‘
END iF e
nexttime = time + 100
END SUB

SUB refresh

E 1132323332233 3322323322 222 R PR XIS LIS 23 3L 83
'REFRESH is a program that refreshes the screen. It copies
‘the map screen off the hidden screen and then places the
'icons on it. REFRESH is scheduled by the BREACH

subprogram.
TR RKRRRRIRR KRR RKARRRERRIRRRRRRRRAK KRR RRRRRERK IR KRR KKk kK

'copy the map screen
PCOPY 1, 0 | o
‘place icons on the map

FOR i = 1 TO 12 ,
IF soldat(i, 3) < 1 OR scldat(i, 3) > 984 THEN GOTO 160 C
IF soldat(i, 4) < 1 OR soldat(i, 4) > 979 THEN GOTO 160 7 s
IF soldat(i, 15) = 0 THEN i '

PUT (soldat(i, 3), soldat(i, 4)), darray, PSET J o/
GOTO 160 ‘»ag
END IF L

IF soldat(i, 1) > 0 THEN !

PUT (soldat(i, 3), soldat(i, 4)), barray, PSET

IF soldat(i, 2) = 1 THEN DRAW "c¢5 u8 rl0 d8 18"
ELSE

PUT (soldat(i, 3), soldat(i, 4)), rarray, PSET

IF soldat(i, 2) = 1 THEN DRAW "¢5 u8 rl0 48 18"

END IF L
160 soldat(i, 16) = soldat(i, 3) —
soldat(i, 17) = soldat(i, 4) .
NEXT i e
nexttime = 5000 -

END SUB

SUB schedule (act, ind, T)
TR A RRARR AR ENAREKKIRRARARKARARRRKARAARREIRRARRRRARRRER Rk

'SCHEDULE adds events to the event calendar. It is called ,/'
'by all subprograms that schedule events. e
AR AR RN KRR ER KRR AR AR KA RRRRRRRRRRARARRRRRRRRRRERR RN R R ‘ %
///
237
L= ,// / \

SHARED nexttime

‘search the event calendar for an empty matrix row

FOR i = 1 TO €D
IF event(i, ») > 0 THEN GOTO 31

event(i, 1) = act
event(i, 2) = ind -
event(i, 3) = T
GOTO 32

31 NEXT i

32 nexttime = T

END SUB

SUB selct (obs, time) ’
PR AR AR ARKRRRR KRR KRR AR KRR RRRRRKRRRRRRE KRR KRR R KRR AR Rk K

'SELECT is the subprogram that allows soldiers to select a
'targe: to engage from the targets on their target list. It
'is scheduled by ACQUIRE whenever one or more targets has

'been detected.
T ARRRRRRRRA IR KRR RKKRR R KRR RRRRARRA AR R TR h kR sk kdkdkkkkhkdkdkhd

SHARED nexttime ,

IF soldat(obs, 15) = 0 THEN
nexttime = 5000

GOTO 103 :

END IF

'inititialize the count of number of targets

count = 0

'loop to count humber of potential targets and sum Pdet
'values

FOR i =1 TO 12
IF ptgt(obs, i) <= 0 THEN GOTO 101
total = ptgt(obs, i) + total :
count = count + 1

101 NEXT i

'if observer is a squad leader schedule a formation change
IF soldat(obs, 2) = 1 THEN CALL schedule(7, obs, time + 20)
pick = RND

T=0

‘loop to pick a target

FOR j = 1 T0 12

238

IF ptgt(obs, j) <= 0 THEN GOTO 102

‘normalize all pdet values

target = ptgt(obs, j) / total
T =T + target L
IF pick < T THEN

' if the soldier is a BLUE squad leader and has detected
more 'than one target, schedule an indirect fire event

IF soldat(obs, 2) = 1 AND soldat(obs, 1) > 0 THEN

IF count > 1 THEN
soldat(cbs, 14) = j

xl1 = soldat(obs, 3)
yl = soldat(obs, 4)
x2 = soldat(j, 3): y2 = soldat(j, 4

range = ((x1 - x2) *~ 2 + (yl - yzx

'if range to target is less than lOOm,‘dﬁ not request fire

END IF .
END IF |

'schedule a direct fire engagement

)

2) * .5

IF range > 100 THEN CALL schedule(9, j, time + 20)

CALL schedule(3, obs, time + 7 + 6 * (hND - .5))

'change firer to a nonmove status :
soldat(obs, 9) = 0 |

'assign target to firer
soldat(obs, 14) = j

‘record firer's previous posture
soldat(obs, 7) = soldat(obs, 10)

‘reduce firer's posture one level

IF soldat(obs, 10) = 3 > 1 THEN soldat(obs,10) =

& soldat(obs,10) - 1
'end select

GOTO 103
END IF
102 NEXT 3j A
nexttime = time + 100
103 END SUB

239

SUB shoot (obs, tlme)
'***

'SHOOT is the subprogram that processes all direct fire
'events. The subprogram is scheduled by the SELECT target

‘subprogram.
AR ERRRRIK KKK RIARRRRRARARRARRRKR KRR RRRRRRRAR KRRk & kK

SHARED nextttime

- SHARED losl

IF soldat(obs, 15) = 0 THEN
nexttime = 5000
GOTO 119

END IF

'B is the variable that represents the number of rcunds per
'burst. It is used to control sound.

B =3

'1c tarbet, observer location, target location and range

tgt = soldat(obs, 14)

xl = soldat(obs, 3): yl
x2 = soldat(tgt, 3): y2
range = (((x1 - x2) * 2

scldat(obs, 4)
soldat(tgt, 4)
(vl - y2) © 2) © .5)

+ u o

'check line of sight to target
CALL los(obs, tgt, x1, yl, x2, y2, range / 1000)

'if no los, then that target is removed from the potential
'‘target list and must be reacquired.

IF (losl < 1) THEN
,ptqt(obs, tgt) =
'schedule another SEARCH
CALL schedule(l, obs, time + 10 + 10 * {RND - .5))

GOTO 119 »
END IF | -

‘go to line based on weapon type

ON soldat(obs, 11) GOTO 111, 112, 113, 114, 115, 116

'M16 Phit

) 111 IF soldat(obs, 12) < 3 GOTO 118 ‘'check ammo

'assign Phit

phit = pl(INT((range + 50) / 1049), soldat(tgt 10))
" decrement ammo count

soldat(obs, 12) = soldat(obs, 12) - 3

GOTO 117

240

'AK74 Phit

112 IF soldat(obs, 12) < 3 GOTO 118 ‘'check ammo
phit = p2(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3

GOTO 117

'SAW Phit

113 B = 6
IF soldat(obs, 12) < 6 GOTO 118 ‘check ammo
IF range < 350 THEN

phit = p3(INT((range + 50) / 100), soldat(tgt 10))
soldat(obs, 12) = soldat(obs, 12) - 6
GOTO 117
END IF

soldat(obs, 12) = soldat(obs, 12) - 6

IF 750 > range > 349 THEN

phit = p3(4, soldat(tgt 10))

GOTO 117

ELSEIF 750 < range < 900 THEN

phit = p3(5, soldat(tgt, 10))

GOTO 117
ELSE
phit = p3(6, soldat(tgt, 10))
GOTO 117
'END IF

'M203 Phit

114 IF range > 300 THEN ‘'make weapon choice based on range
IF soldat(obs, 12) < 3 GOTO 118
B =3
phit = pl(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(ocbs, 12) - 3
GOTO 117

END IF

'If range < 300, use M203

B=1

soldat{obs, 5) = soldat{obs, 5) - 1

IF soldat(obs, 5) < 1 THEN
soldat(obs, 1ll1l) =

END IF

'‘assign impact point

x2 + triag(-.032, 0, .032) * range
y2 + triag(-.096, 0, .096) * range

X
b 4

'‘compute Phit using Carlton's Function

241

phit = EXP(-((x =~ 32) "2+ (y - y2) *2) [/ 25)
GOTO 117

'User input weapon Phit

115 IF soldat(obs, 12) < 3 GOTO 118

phit = p5(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3

GOTO 117 o

'user input we&pon Phit o

116 IF soldat(obs, 12) < 3 GOTO 118

phit = p6(INT((range + 50) / 100), soldat(tgt, 10))
soldat(obs, 12) = soldat(obs, 12) - 3

‘assign firing time to soldier attribute 6, this increases
'tirers signature

117 soldat(obs, 6) = time
‘compute angle of observér-target line

k = ATN(ABS((y2 ~ yl) / (%2 ~ x1)))

IF (y2 > yl) AND (%2 < x1) THEN k = 3.141 - k
IF (y2 < yl) AND (x2 < x1) THEN k¥ = k - 3.141
IFP (y2 < yl) AND (x2 > x1) THEN k = -k

IF (yl = y2) AND (x2 < x1) THEN k = 3.141

x=2x1: y=1y1l +10
'dravw line of fire

FOR i = 1 TO range STEP 5

LINE (x, y)-(x1 + i * cos(k), yl + 10 + i * SIN(k)), 4
x = x1 + i * CoS(k): y = yl +# 10 + i * S8IN(k)

NEXT i '

'if the grenade launcher is used, make the explosion

IF B = 1 THEN
CALL explode(xz, y, 10)
CALL refresh
GOTO 120

END IF

'if direct fire is used, make a sound to represent rounds
‘firing

PLAY "tso"

FOR i =1 TOB
SOUND 250, 2.5
PLAY "164 nO"
NEXT i

- 242

'erase the red line

X =21t y=y1+10

FOR {1 = 1 TO range STEP §

LINE (x, y)-(x1 + i * cos(k), yl + 10 + i * S8IN(k)), 15
x=3x1 +1 * CcoS(k): y =yl +# 10 + i * SIN(k)

NEXT i

LINE (x, y)-(x1 + range * COS(k), yl + 10 + range *
8IN(k)).,15

'Bernoulli trial to determine outcome of engagement

120 IF RND > phit THEN

LOCATE 2, 1: PRINT USING "Miss P(hit) = 3#8"; phit
CALL schedule(s tgt, time + 3) 'schedule react to fire
ELSE

LOCATE 2, 1: PRINT USING "Hit P(hit) = 4#3"; phit

'‘assign weapon type for recording hit data for kill card

wpn = soldat(obs, 11)

IF soldat(obs, 1) < 1 AND wpn 3 THEN wpn = 8

IF wpn = 4 AND B > 1 THEN wpn 3

tgtrec(wpn, 1) = tgtrec(wpn, 1) + 1

IF tgtrec{wpn, 2) < range THEN tgtrec(wpn, 2) = range
IF tgtrec(wpn, 4) < 1 THEN tgtrec(wpn, 4) = range

IF tgtrec(wpn, 4) > range THEN tgtrec(wpn, 4) = range
tgtrec(wpn, 3) = tgtrec(wpn, 3) + range

'‘call impact to see results of hit

CALL impact(tgt)
END IP

‘random number draw to see whether to reengage the target

IF RND > .7 THEN '*schedule another engagenent
CALL schedule(3, obs, time + 5)
GOTO 119

ELSE 'schedule a search
soldat(obs, 9) = 1
x = time + 5 * (RNQ - .3) x5
IF range > 50 THEN
soldatobs, 9) = 1
soldat(obs, 10) = soldat(obs, 7)
ELSE 'don't move if range < 50m
soldat(obs, 9) =
END IF
CALL schedule(l, obs, z + 3)
GOTO 119
END IF

243

'adjusts magazine and ammo count to reilect reloading

118 Soldat(obs, 13) = soldat(obs, 13)'- 1

IF soldat(obs, 10) = 1 THEN soldat(obs, 12) = 30
IP soldat(obs, 10) = 2 THEN soldat(obs, 12) = 40
IF soldat(obs, 10) = 3 THEN soldat(obs, 12) = 200
IF soldat(obs, 10)°'= 5 THEN soldat(obs, 12) = 30
IF soldat(obs, 10) = 6 THEN soldat(obs, 12) = 30

'*schedule a search

CALL schedule(3, obs, time + 5 + (RND - .3) * 5)
119 END SUB

- FUNCTION triag (a!, d!, B!) STATIC
PRRRRRERRIRRRERRARRRRRRRRRERRERRARIRRRRRRRRRRIRERRRRRRE AN

'This function is used to replicate the normal distribution
P e T I N T I I I I D e T I I I T T I LYY
lower bound = mode - 2 stddev

mode
upper bound = mode + 2 stddev

'VARIABLES: a-
' d
' B

r = RND
IF (r < (d - a) / (B ~ a)) THEN

triag = a + SQR((d - a) * (B ~ a) * r)

ELSE

triag = B - SQR((B - d) * (B ~ a) * (1 - r))
END IF .

END FUNCTION

SUB wire (obs)
RRAERRRRRIREARAAAEEIIRRRRARARAR AR RRAI TR IR TR AR K kR R R RN

'WIRE is called from the ACQUIRE subprogram, if a wire
'obstacle has been input the user. The subprogram first
'‘determines if the current azimuth of the squad leader
‘intersects the obstacle. If it does, the subprogram checks
'if the squad leader has line of sight to the obstacle. 1If

'so, a message reflecting obstacle detection is displayed on _

‘the screen. The subprogram is not accessed again by that
'side, unless that side makes a direction change. 1In that
‘case, the obstacle flag is updated and ACQUIRE again calls

'WIRE.
TRARRRRRKKRRRERRRRRR AR KRR RRRR AR RRRRRRRRRNRR AR ARRARARRRR AR KRR

SHARED bwire, rwire, 1, bbrch, rbrch
IF soldat(obs, 1) = 0 THEN 129

'lst compute the constants of the squad leader's azimuth and

244

'the wire obstacle linear equations

bl = soldat(obs, 3): y = soldat(obs, 4)

x = bl ‘
a = soldat(obs, 8)' a = slope of line
i=1

'lin is the array containing the horizontal and vertical
start ;and end points of the obstacle

'm = slope of cbstacle line

m2 = (lin{i, 4) - lin(i, 2)) / (lin(i, 3) - lin(i, 1))
b2 = y intercept of obstacle line

b2 = lin(i, 2) - m2 * lin(i, 1)

‘loop checks every meter along the obstacle to see if a line
'having the slope (azimuth) of the squad leader) intersects
'the obstacle

" POR j = lin(i 1) TO lin(i, 3)

r=((j-x) "2+ (m2*3+b2-y)" 2) .5

IF ABS(x + r * C0S(a) -~ 3) > 1 THEN GOTO 127'no intersect
IF ABS(y + r * SIN(a) - j * m2 - b2) > 1 THEN GOTO 127
'hexx = horizontal coordinate of terrain cell

hexx = INT(x / 20 + 1)
'hexy = vertical coordinate of terrain cell
hexy = INT(y / 20 + 1)

‘adjust elevation to reflect current posture of sduad leader

oht = 1
IF soldat(obs, 10) > 2 THEN okt = .25
IP soldat(obs, 10) = 2 THEN oht = .5

‘compute height of observer and obstacle

zl mapl(hexx, hexy, 3) + 1.8 * oht
22) mapl(INT(j / 20 + 1), INT((m2 * j + b%) / 20 + 1),
& 3)+1.5

IF mapl(hexx, hexy, 2) < 1 THEN
we=1

ELSE
w=20

END IF

'slope of observér-obstacle line

slope = (22 - z1) / r

245

' k
k

azimuth

soldat(obs, 8)‘

'‘loop to check los to obstacle, same method as the los
FORh=1T0Tr
xn = x + h * cos(k): vn =y + h * SIN(k)
IF INT(xn / 20 + 1) = hexx AND INT(yn / 20 + 1) = hexy
& THEN GOTO 128 ‘
hexx = INT(xn / 20 + 1): hexy = INT(yn / 20 + 1)

‘check if still in wooded area and adjust elevation
'‘accordingly

IF w = 1 AND mapl(hexx, hexy, 2) = 1 THEN w = 0

IF w £ 0 AND mapl(hexx, hexy, 2) < 1 THEN

znew = mapl(hexx, hexy, 3) + 10 / mapl(hexx, hexy, 2)
ELSE

znew = mapl(hexx, hexy, 3)
END IF

'if the neu elevation is less than the prev;ous cell, no los
1
IF gznew <= gzl + slope * h THEN GOTO 128
GOTO 129
128 NEXT h
1

'if no iﬁtervening terrain blocks line of sight display '
'message;and update obstacle detection flag

IF soldat(obs, 1) > 0 THEN

strng$ = "Blue"
. bwire = 1

ELSE
strng$ = "Red "
ruire = 1

END IP

LOCATE 1, 1

PRINT USING "& soldier detects obstacle at #3# #3#3";

§ strng8; j; m2 * j + b2
GOTO 129

127 NEXT j

'if the outer loop has cycled all the way through, then the
'‘current azimuth does not intersect the obstacle and a
'bypass is possible. Update the obstacle breach status and
'the obstacle detection status

IP soldat(obs, 1) > 0 THEN

buire = 2
bbrch = 1

246

ELSE
rwire
rbech

END IFP

129 END

nan
[

SUB

247

11.

Bibliography

Anderson, L. B., J.H. Cushmen, A. L. Gropman, V.P.
Roske. "A Toxonomy for Warfare Simulation” A Workshop
Bgzg;;. Military Operations Research Society, 1987.

Battileqe, John A. and Judith X. Grange. The Mjilitary
. Washington. Government

Printing otfice, 1984.
Bondex, Seth. "An Overview of Land Battle Modeling in

the US," Proceedings 13th U.S. Army Operatjons Research
Symposium: 73-88, (November 1974)

. Brewer, Garry D. and uartin Shubik. The War Game: A

olving. Cambridge:

Harvard University Press, 1979.

Cox, CPT David K. TAN: stuctiona
Resolution Land Combat Model. MS Thesis,

AFIT/ENS/GOR/92M-7. Air Force Institute of Technology,
Wright-Patterson AFB OH, March 199z (No DTIC yet)

Depertment of the Army. A de vement
. AR 5-11 (draft). Washington: Government

Program
Printing Office, 1990.

Department of the Army. us Army TRADOC Analysis

Center. CASTFOREM Update: Methodologies.
TRAC-WSMR-TD~92-011. Washington: Government Printing

Office, April 1992.

. Department of the Army. US Army TRADOC Analysis Cente:.

(o] . Washington: Government
Printing Office, June 1986.

Dunnigan, James F. The Complete Wargames Handbook. New
York: William Morrow and Company, 1980.

“One. DARCOM-P 706-101. U.S. Army
Material Development and Readiness Command, Washington:
Government Printing Office, November 1977.

Government Accounting Office, Guidelines for Model
: Draft. PAD-79-17, Washington:

Evaluation: Exposure
Government Printing Office, January 1979.

248

12.

13.

14.

15.

16.

17.

-18.

19.

20.

21.

Government Accounting Office. yoﬁelﬁ, Data, and War: A
Critique of the Foundation for Defense Analysis.
Washington: government Printiij; Office, 1980.

Hartman, James K. Lecture Notes in High Resolution
Combat Modeling. Unpublished Not s, 1985. Class
handout for OPER 775, Land Combat ..odeling I. School of
Engineering, Air Force Institute of Technology,
Wright-Patterson AFB OH, July 1991.

Joint Analysis Directorate, Organization of the Joint
Chiefs of Staff. Catalogue of Wargaming and Military
Simulations Modeling. JADAM 207-91. Washington:
Government Printing Office, 1991.(AD-A213-970)

Krueger, John L. "Pitfalls in Combat Simulations,"”
Military keview LXXII: 20-25. (June 1992).

Law, Averill M. and W David Kelton. Simulation Modelirg
and Analysis. New York: McGraw-Hill Book Company, 1982.

Lawrence Livermore National Laboratory's Conflict

Simulation Laboratory. The JANUS Algorithms Guide.
California: University of California, 1990.

Nance, Richard E. and James D. Arthur. "The Methodology
Roles in the Realization of a Model Development

Environment,"” Proceedings of the 1988 Winter
Simulation Conference. 220-225. New York: IEEE Press,

1988.

Pritsker, A. Alan B. Introduction to Simulation and
SLAM I1. New York: Halsted Press Book, 1986.

Rand Corporation. Systems Analysis and Policy Planning:
Applications in Defense. Edited by Quade, E. S. and W.
J.Boucher. New York: Elsevier, 1968.

Ross, John G. "An exclusive AFJI interview with:
General Frederick M. Franks, vr., USA," Armed Forces
Journal International. 68-69. (October 1992).

249

!

EFRREIEE 7 ¥t Ca L g i G S AT L g ro et s e A e

- " r .) 1 v B . -,

Vita

Captain Edwin H. Harris III was born on 29 June 1961 in |

Durham, North Carolina. He graduated from Lake Braddock

. Secondary School in Fairfax, Virginia in 1979 ard entered

the United States Military Academy in July 1979. Ee
graduated from West Point, with a Bachelor of Science dégree
in Civil Engineering, in 1983. -

Upon graduation, he was commissioned as an Infantry
officer. After a series of military schools at Fort
Benning, Georgia, CPT Harris was assigned to the 82nd
Airborne Division at Fort Bragg, North Carolina. While
ﬁhere, he served as an infantry platoon leader, a rifle
éompaﬁy executive officer, and a battalion air operation's
officer. | o

In 1987, after attending the Infantry Officer's
Advanced Course, CPT Harris was assigned to a mechanized
infantry battalion in the lst Armored Division in éermany.
puring his four years in Gérmany, CPT Harris served as a
battalion adjutant, company| commander, and brigade plans
officer.

In August 1991, after As assignment in Germany, CPT
entered the Schoocl of Engineering, Air Force Institute of
Technology.

Permanent Address: 2007 Stonegate
Denton, TX 76205

250

M Y N :) ! : N R

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Puplic ~2pOrt NI Jurgen TOr 115 (oltect:on 3t ATQrmaticn 3 estimateqa 1o average 1 RQUr DEr rAs00onrse, acyamrg the ume 10r reviewing (nSTrUCiONs, searcning existing Jata Wuffﬂ,
gathering 3nd MANTAINING The dat3 Needed. INd LOMCIENNG AN reviewing the c2liection of information. jend (Cmments ragarding t™is Durden estimate or any ther ysoect ot this
roltectign Ot :ntcrmation, including sugqestions *or reducing this curaden o Nashington Headauarters Sersices, Cirectorate for 'n!Srmation Operations ana Reoorts, 1215 ,etferson

Qavis Highway, Suite 1204, Artington. VA 22272-4302, 1na tC the DHice ot Management and Budger, 2yperaGrx Regucticn Project (0704-0188), wasnington, 3C 20503,

2, REPORT DATE 3. REPGRT TYPE AND DATES COVERED

1. AGENCY USE ONLY (Leave biank)
March 1993 Master's Thesis

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

SPARTAN II: AN INSTRUCTIONAL HIGH RESOLUTION
LAND COMBAT MODEL

6. AUTHOR(S)

CPT BEdwin H. Harris II1I, UsA
]
: , ES 8. PSRFORMING ORGANIZATION
7. PERFORMING CRGANIZATION NAME(S) AND ADDRESS(ES) PERFORMING OR(
{ Air Force Institute of Technology AFIT/GOR/ENS/92M-09

1
i
i

: Wright-Patterson AFB, Ohio 45433

i
i
H
i
i
]
i

1
t

‘ ENS/AFIT

10. SPONSORING / MONITORING

RING AGENCY NAME(S) AND ADDRESS(ES)
9. SPONSORING / MONITORING AGE (S) { A ATAA A

Wright-Patterson APB, Ohio 45433

11. SUPPLEMENTARY NOTES

12b. DISTRIBUTION CODE

12a. DISTRIBUTION/ AVAILABILITY STATEMENT

Unlimited Distribution

. ABSTRACT (Maxi 200 ds) . .
13 %hzé 6#8?2%: fgﬁroved SPARTAN, a high resolution land combat model

SPARTAN was originally developed as a hands-on trainer for land
combet modeling students. The new SPARTAN is built to demonstrate the techniques
used in the current generation of US Army high resolution models. Like the
original, this model is primarily a small scale attrition (both direct and
indirect fire) model. The model represents 12 soldiers involved in the following
pProcesses! target search, target selection, direct fire engagement, indirect fire
engagement, movement, reaction to fire, obstacle breaching, and some elements of
c?unmnd and control. The emphasis on model development was to keep the logic
simple, yet accurately portray current modeling techniques as used in JANUS and
CASTFOREM. SPARTAN contains numerous features that allow the user to observe, in
great detail, how the model represents the various activities of the soldiers.

An educational assessment of the model was performed by students and faculty at
the Air Porce Institute of Technology. ' '

demonstrator.

15, NUMBER OF PAGES

Ebﬁ%yécisg%ﬁis, Models, High Resolution 261

heapons Effects 16. PRICE COOE

17. SECURITY CLASSIFICATION |18. SECURITY CLASSIFICATION]19. SECURITY CLASSIFICATION §20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT :
UNCLASSIFIED UNCLASSIFIED UNCLASSIFIED UL
NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
Prescribed by ANSI Std. 239-18
X ST : t - -

e
<
a

{
!

